SACRAMENTO RENDERING CO. Sacramento, CA

SOURCE TEST REPORT Volatile Organic Compounds (VOC) Emission Results Four (4) Wet Scrubbers Scrubber #1/APC Scrubber [Permit #21356] Scrubber #2/APC Counter Flow Tower Scrubber [Permit #21357] Scrubber #3/Cross-Flow Scrubber [Permit #17221] Scrubber #4/Spray Tower Scrubber [Permit #18423]

> **Test Date(s):** April 26 & May 3, 2017 **Report Date:** June 13, 2017

Performed and Reported by:

BEST ENVIRONMENTAL (BE) 339 Stealth Ct. Livermore, CA 94551 Phone: (925) 455-9474 Fax: (925) 455-9479 Email: bestair@sbcglobal.net http://www.bestenvironmentalonline.com/

Prepared For:

Sacramento Rendering Co. 11350 Kiefer Blvd. Sacramento, CA 95830 Attn: Mr. Scott Navlyt

For Submittal To:

Sacramento Metropolitan AQMD 777 12th Street, 3rd Floor Sacramento, CA 95814 Attn: Mr. Don Dumaine

REVIEW AND CERTIFICATION

Team Leader:

The work performed herein was conducted under my supervision, and I certify that the details and results contained within this report are to the best of my knowledge an authentic and accurate representation of the test program. If this report is submitted for compliance purposes it should only be reproduced in its entirety. If there are any questions concerning this report, please call the Team Leader or Reviewer at (925) 455-9474.

flettr

Suhail Asfour Project Manager

Reviewer:

I have reviewed this report for presentation and accuracy of content, and hereby certify that to the best of my knowledge the information is complete and correct.

20gan By

Regan Best Source Test Manager

TABLE of CONTENTS

SECTIO	N 1.	INTRODUCTION	1
1.1.	TEST	PURPOSE	1
1.2.	TEST	LOCATION	
1.3.	TEST	DATE(S)	
1.4.	Poli	UTANTS TESTED	
1.5.	SAM	PLING AND OBSERVING PERSONNEL	1
SECTIO	N 2.	SUMMARY OF RESULTS	2
2.1.	Emis	SION RESULTS	2
2.2.	Allo	DWABLE EMISSIONS	
2.3.	Сом	MENTS: DISCUSSION OF QUALITY ASSURANCE AND ERRORS	2
SECTIO	N 3.	SOURCE OPERATION	3
3.1.	Proc	ESS DESCRIPTION	
3.2.	Proc	ESS AND CONTROL OPERATING PARAMETERS DURING TESTING	
3.3.	TEST	ING OR PROCESS INTERRUPTIONS AND CHANGES	
SECTIO	N 4.	SAMPLING AND ANALYSIS PROCEDURES	4
4.1.	Port	LOCATION	4
4.2.	POIN	T DESCRIPTION/LABELING – PORTS/STACK	
4.3.	MET	HOD DESCRIPTION, EQUIPMENT, SAMPLING, ANALYSIS AND QA/QC	
TABLE 1	I- SCR	UBBERS #1, 2 & 3 - VOC EMISSION RESULTS	6
TABLE 2	2- SCR	UBBER #4 - VOC EMISSION RESULTS	7
		~	
APPENI	DICE	9	A
	А.	Calculations & Nomenclature	A-1
	В.	Laboratory Reports	B-1
	C.	Field Data Sheets	C-1
	D.	Equipment Calibration Records	D-1
	E.	Stack Diagrams	E-1
	F.	Sampling System Diagrams	F-1
	G.	Source Test Plan	G-1
	H.	Permit to Operate	H-1

SECTION 1. INTRODUCTION

1.1. Test Purpose

Best Environmental was contracted by Sacramento Rendering Company to perform Volatile Organic Compounds (VOC) testing using EPA Method TO-15. Stack velocity measurements were used to determine the stack gas flow rate during each run at each scrubber. Testing was performed to comply with Sacramento Metropolitan Air Quality Management District (SMAQMD) Permit to Operate (PTO) #21356, 21357, 17221 and 18423. The PTOs are located in Appendix H.

1.2. Test Location

The testing was conducted at each scrubber exhaust outlet located at Sacramento Rendering Company, 11350 Kiefer Blvd, Sacramento, CA.

1.3. Test Date(s)

Testing was conducted on April 26, 2017 for scrubbers #2 & 4. Testing was conducted on May 3, 2017 for scrubbers #1 & 3

1.4. Pollutants Tested

The following emission parameters were measured on each scrubber outlet:

Parameter	Test Methods
VOC	EPA Methods TO-15
Stack Gas Volumetric Flow Rate	EPA Method 1-4

1.5. Sampling and Observing Personnel

Sampling was performed by Suhail Asfour, Burt Kusich and Jim McCormack of BEST ENVIRONMENTAL (BE).

Don Dumaine from the SMAQMD was present to witness the testing on April 26 and May 3, 2017.

SECTION 2. SUMMARY OF RESULTS

2.1. Emission Results

PTO #21356, 21357 & 17221								
Oper	Operating Condition: Maximum							
Parameter	Parameter Scrubbers #1 Scrubbers #2 Scrubbers #3 Allowable							
Run 1 Run 1 Run 1 Emissions								
VOC, Total Emission Rate (lbs/hr)	0.245	0.371	0.106	N.A				

Table 2.1: Scrubbers #1. 2 & 3

Table 2.2: Scrubber #4 PTO #18423 Operating Condition: Maximum

Operating Condition. Maximum						
Parameter	3 Runs	Allowable				
	Average	Emissions				
VOC, Total Emission Rate (lbs/hr)	0.070	N.A				

A more extensive summary of the emissions is presented in Tables 1 and 2 following the text.

2.2. Allowable Emissions

See Tables 2.1 and 2.2 above. VOC total emission rate lbs/hr are based on TO-15 detected compounds only.

2.3. Comments: Discussion of Quality Assurance and Errors

Quality assurance / quality control (QA/QC) procedures were performed and documented as described in Section 4.3 of this report. Documentation of the QA/QC is provided in Appendices A, B & D. Calculations, laboratory reports, field data sheets, equipment calibration records, stack diagram, sampling system diagrams, source test plan, and permit to operate are appended to this report.

Only one of two ports was available for **Scrubber #2** as the other was clogged. Sampling was performed through one port and was approved by Don Dumaine from the SMAQMD.

Two set of flow were performed with each Summa Canister test run.

SECTION 3. SOURCE OPERATION

3.1. Process Description

Sacramento Rendering Company operates four (4) wet scrubbers at there facility.

For more information on each source, please refer to the Permit section located in Appendix H of this report.

3.2. Process and Control Operating Parameters during Testing

All scrubbers were operating at maximum achievable load during the testing

3.3. Testing or Process Interruptions and Changes

No delays or process upsets occurred during the tests.

SECTION 4. SAMPLING AND ANALYSIS PROCEDURES

4.1. Port Location

Scrubber #1

Emissions from the stack outlet were sampled through two 1.5-inch ports on the circular stack 90° apart, the ports are located 3 stack diameters downstream and 1 stack diameters upstream from the nearest disturbance.

The dimensional cross section of the Scrubber #1 stack is 60-inches (Area SQFT =19.635)

Scrubber #2

Emissions from the stack outlet were sampled through one 3.25-inch port on the circular stack the port are located 2 stack diameters downstream and >0.5 stack diameters upstream from the nearest disturbance.

The dimensional cross section of the Scrubber #2 stack is 84-inches (Area SQFT = 38.485)

Scrubber #3

Emissions from the stack outlet were sampled through two 1.5-inch ports on the circular stack 90° apart, the ports are located 1.5 stack diameters downstream and 0.5 stack diameters upstream from the nearest disturbance.

The dimensional cross section of the Scrubber #3 stack is 70-inches (Area SQFT =26.725)

Scrubber #4

Emissions from the stack outlet were sampled through two $1^{3}/_{8}$ -inch ports on the circular stack 90° apart, the ports are located 2 stack diameters downstream and >0.5 stack diameters upstream from the nearest disturbance.

The dimensional cross section of the Scrubber #4 stack is 81-inches (Area SQFT =35.785)

4.2. Point Description/Labeling – Ports/Stack

The Stacks ports were not labeled, but were designated as 1 & 2. A total of 16-points were selected in accordance to EPA Method 1, 8 per port for the Manual velocity measurements.

4.3. Method Description, Equipment, Sampling, Analysis and QA/QC

Sampling and analytical procedures of the methods were followed as published in CARB Stationary Source Test Methods Volume I and the EPA "Quality Assurance Handbook for Air Pollution Measurement Systems" Volume III, US EPA 600/4-77-027b.

Parameter	Location	Method(s)	Duration	# of Runs
VOC	Exhaust	EPA Methods TO-15	30 mins	6
Volumetric Flow Rate	Exhaust	EPA Method 1-4	15 mins	12

The Following is an Overview of the Testing Performed

EPA Method 1. This method is used to determine the duct or stack area and appropriate traverse points that represent equal areas of the duct for sampling and velocity measurements. The

point selection is made based on the type of test (particulate or velocity), the stack diameter and port location distance from flow disturbance.

EPA Method 2 is used to determine stack gas velocity using a standard or S-type pitot tube and inclined manometer or magnahelic. Temperature is monitored using a K-type thermocouple and calibrated Omega temperature meter. Leak checks are performed before and after each traverse to validate the results. Thermometer calibrations are performed using an Omega Model CL-300 calibrator. Geometric calibrations of S-type pitots are performed and records are submitted with the report.

Equipment: The following Velocity determination equipment was used:

Inlet & Outlet
Calibrated S-Type pitot w/ temperature thermometer
Calibrated Magnahelic gauges
Calibrated Pyrometer

EPA Method 3 is used to determine the molecular weight of the stack gas for the velocity determination. The $\%O_2$ and $\%CO_2$ concentrations are used and are measured by fyrite apparatus, continuous emissions monitoring analyzers or can be assumed for ambient conditions when applicable.

EPA Method 4 (alternate) was used to determine stack moisture at the outlet by temperature saturation calculations for moisture determination. This can be used where ambient conditions exist. The stack temperature is recorded and entered into the spreadsheet as well as barometric pressure and stack static pressure. This data is used to calculate the Saturated Vapor Pressure and stack moisture content. Calculations can be found in Appendix A.

EPA Method TO-15 Volatile Organics by SUMMA® Canister. Sampling consists of collecting gases in pre-evacuated 6-Liter SUMMA canisters with pre-set flow controllers set to integrate over the desired test duration. The SUMMA® passivated canisters allow holding times up to 14 days for the TO-15 Method list of volatile organics. The sample gas is drawn by the canister vacuum through a micro-filter, pre-set orifice flow controller and on/off valve into the canister. The canister vacuum is monitored with a vacuum gauge to verify sample collection. In this case, the flow controller consisted of capillary orifice tubing designed to sample for a pre-set duration of 30-mins. The samples were analyzed for volatile organics by EPA Method TO-15 using GC/MS (gas chromatography/mass spectroscopy), and for naphthalene, not included in the TO-15 list. Analysis was performed by Atmospheric Analysis & Consulting, Inc. laboratory in Ventura, California.

TABLE #1Sacramento Rendering Co.

Scrubbers # 1, 2 & 3 Maximum Operation

Permit #	21356	21357	17221	
Scrubber #	1	2	3	LIMIT
Test Location	Outlet	Outlet	Outlet	
Test Date	5/3/17	4/26/17	5/3/17	
Test Time	1217-1247	1339-1409	1031-1101	
Standard Temp., °F	68	68	68	
Outlet Flow Rate, DSCFM	37,287	57,312	76,681	
Propene, ppm	0.00503	N.A	N.A.	
Propene, lbs/hr	0.001	NA	N.A.	
Chloromethane, ppm	0.00307	0.00264	N.A.	
Chloromethane, lbs/hr	0.001	0.0012	N.A.	
Methanol, ppm	0.09930	0.31500	N.A.	
Methanol, lbs/hr	0.018	0.090	N.A.	
Ethanol, ppm	0.64300	0.58000	0.12400	
Ethanol, lbs/hr	0.172	0.2385	0.0682	
Acetone, ppm	0.13100	0.05170	0.03570	
Acetone, lbs/hr	0.044	0.0268	0.0248	
Carbon Disulfide, ppm	0.00434	N.A	N.A	
Carbon Disulfide, lbs/hr	0.0019	N.A	N.A	
2-Butanone (MEK), ppm	0.01930	0.01880	0.00800	
2-Butanone (MEK), lbs/hr	0.008	0.0121	0.0069	
Hexane, ppm	N.A	N.A	0.00238	
Hexane, lbs/hr	N.A	N.A	0.002	
Ethyl Acetate, ppm	N.A	0.00261	N.A	
Ethyl Acetate, lbs/hr	N.A	0.002	N.A	
Heptane, ppm	N.A	N.A	0.00296	
Heptane, lbs/hr	N.A	N.A	0.004	
Total Emission Rate (lbs/hr)	0.245	0.371	0.106	N.A

WHERE:

MW = Molecular Weight DSCFM = Dry Standard Cubic Feet Per Minute ppm = Parts Per Million Concentration lbs/hr = Pound Per Hour Emission Rate N.A. = Not detected CALCULATIONS:

lbs/hr = ppm * MW * DSCFM * 60 / 385E6 (Tstd 60°F)

Chloromethane (MW = 50.49) Methanol (MW = 32.00) Ethanol (MW = 46.07) Ethyl Acetate (MW = 88.11) Propene (MW = 42.08) Acetone (MW = 42.08) Acetone (MW = 58.08) 2-Butanone MEK (MW = 72.10) Hexane (MW = 86.18) Heptane (MW = 100.2) Carbon Disulfide (MW = 76.13)

TABLE #2

Sacramento Rendering Co.

Scrubber #4 (Permit #18423)

Maximum Operation

TEST	1	2	3	AVERAGE	LIMIT
Test Location	Outlet	Outlet	Outlet		
Test Date	4/26/17	4/26/17	4/26/17		
Test Time	1046-1116	1124-1154	1202-1332		
Standard Temp., °F	68	68	68		
Outlet Flow Rate, DSCFM	60,236	58,961	59,901		
Propene, ppm	0.00424	N.A	N.A.	0.00424	
Propene, lbs/hr	0.002	NA	N.A.	0.002	
Chloromethane, ppm	0.00744	0.00351	0.00410	0.00502	
Chloromethane, lbs/hr	0.004	0.002	0.002	0.002	
Ethanol, ppm	0.05160	0.08740	0.09570	0.07823	
Ethanol, lbs/hr	0.022	0.037	0.041	0.033	
Acetone, ppm	0.04450	0.02780	0.02490	0.03240	
Acetone, lbs/hr	0.024	0.015	0.013	0.018	
2-Butanone (MEK), ppm	0.02690	0.01650	0.01310	0.01883	
2-Butanone (MEK), lbs/hr	0.018	0.011	0.009	0.0126	
Hexane, ppm	0.00209	N.A	N.A	0.00209	
Hexane, lbs/hr	0.002	N.A	N.A	0.002	
Ethyl Acetate, ppm	0.00251	N.A	N.A	0.00251	
Ethyl Acetate, lbs/hr	0.002	N.A	N.A	0.002	
Heptane, ppm	0.00386	N.A	N.A	0.00386	
Heptane, lbs/hr	0.004	N.A	N.A	0.004	
Toluene, ppm	0.00186	N.A	N.A	0.00186	
Toluene, lbs/hr	0.002	N.A	N.A	0.002	
Total Emission Rate (lbs/hr)	0.079	0.064	0.065	0.070	N.A

WHERE:

MW = Molecular Weight DSCFM = Dry Standard Cubic Feet Per Minute ppm = Parts Per Million Concentration lbs/hr = Pound Per Hour Emission Rate N.A. = Not detected **CALCULATIONS:**

lbs/hr = ppm * MW * DSCFM * 60 / 385E6 (Tstd 60°F)

Chloromethane (MW = 50.49) Ethanol (MW = 46.07) Ethyl Acetate (MW = 88.11) Propene (MW = 42.08) Acetone (MW = 58.08) 2-Butanone MEK (MW = 72.10) Hexane (MW = 86.18)

Heptane (MW = 100.2) Toluene (MW = 92.14)

APPENDICES

APPENDIX A – CALCULATIONS & NOMENCLATURE

APPENDIX B - LABORATORY REPORTS

APPENDIX C - FIELD DATA SHEETS

APPENDIX D- EQUIPMENT CALIBRATION RECORDS

APPENDIX E - STACK DIAGRAMS

APPENDIX F - SAMPLING SYSTEM DIAGRAMS

APPENDIX G – SOURCE TEST PLAN

APPENDIX H – AUTHORITY TO CONSTRUCT OR PERMIT TO OPERATE APPENDIX A CALCULATIONS & NOMENCLATURE

Standard Abbreviations for Reports							
Unit	Abbreviation	Unit	Abbreviation				
billion	G	microgram	μg				
Brake horsepower	bhp	milligram	mg				
Brake horsepower hour	bhp-hr	milliliter	ml				
British Thermal Unit	Btu	million	MM				
capture efficiency	CE	minute	min				
destruction efficiency	DE	Molecular Weight	М				
Dry Standard Cubic Feet	DSCF	nanogram	ng				
Dry Standard Cubic Feet per Minute	DSCFM	Parts per Billion	ppb				
Dry Standard Cubic Meter	DSCM	Parts per Million	ppm				
Dry Standard Cubic Meter per Minute	DSCMM	pennyweight per firkin	pw/fkn				
grains per dry standard cubic foot	gr/DSCF	pound	lb				
gram	g	pounds per hour	lbs/hr				
grams per Brake horsepower hour	g/bhp-hr	pounds per million Btu	lbs/MMBtu				
kilowatt	kW	second	sec				
liter	1	Specific Volume, ft ³ /lb-mole	SV				
Megawatts	MW	Thousand	k				
meter	m	watt	W				
Common Conversions / Calculations / Constants							

1 gram = 15.432 grains

1 pound = 7000 grains

grams per pound = 453.6

bhp = 1.411 * Engine kW, (where Engine kW = Generator kW output / 0.95) @ 95% efficiency

g/bhp-hr = 453*ppm*(MW / (385E6))* 0.00848 * f-factor * (20.9 / (20.9-O₂)); CARB

g/bhp-hr = lbs/hr * 453.6 / bhp

2.59E-9 = Conversion factor for ppm to lbs/scf; EPA 40CFR60.45

Correction Multiplier for Standard Temperature = $(460 + T_{std}. {}^{\circ}F) / 528$

dscf / MMBTU = 8710 for Natural gas; EPA Method 19

Btu/ft³ = 1040 for Natural Gas; EPA Method 19

lb/hr Part. Emission Rate = 0.00857 * gr/dscf * dscfm; EPA Method 5

 $lbs/hr = ppm / SV \times dscfm \times M * 60$; CARB Method 100; where $SV \approx 385E^6$ @ $68^\circ F$ or $\approx 379E^6$ @ $60^\circ F$ or $\approx 386E^6$ @ $70^\circ F$.

Correction to 12% CO₂ = gr/dscf * 12% / stack CO₂%; **EPA Method 5**

Correction to $3\% O_2 = ppm * 17.9 / (20.9 - stack O_2 \%)$; CARB Method 100

Correction to $15\% O_2 = ppm * 5.9 / (20.9 - stack O_2 \%)$; CARB Method 100

dscfm = Gas Fd * MMBtu/min * 20.9 / (20.9 - stack O_2 %); EPA Method 19

lb/MMBtu = Fd * M * ppm * 2.59E-9 * 20.9 / (20.9 - stack O₂ %); EPA Method 19

Standard Temperatures by District

			$M = (1, 2, 1) \otimes (1, 2) = M = (2, 2) \otimes (2, 2)$
EPA	68 °F	NSAPCD - Northern Sonoma	68 °F
CARB	68 °F	PCAPCD - Placer	68 °F
BAAQMD - Bay Area	70 °F	SLOCAPCD - San Luis Obispo	60 °F
SJVUAPCD - San Joaquin	60 °F	SMAQMD - Sacramento	68°F de facto
SCAQMD - South Coast	60 °F	SCAQMD - Shasta County	68 °F
MBUAPCD - Monterey Bay	68 °F	YSAPCD - Yolo-Solano	68 °F
FRAQMD – Feather River	68 °F	AADBAPC – Amador County	68 °F

Z:\FORMS\FIELD\ABREV.doc05/04/12

STACK GAS FLOW RATE DETERMINATION -- PITOT TRAVERSE

Facility: Sacramer	to Rendering Co	р.				
Condition: Maximum ($1, 2 \ll 3$					
Date:	operation		5/3/2017	4/26/2017	5/3/2017	
Time:			12:27	13:40	10:40	
		Scrubbers #	1	2	3	
1. Temperature of Stack	(Ts)		97.30	69.70	91.60	°F
2. Std Temperature (Tst	d)		68	68	68	°F
3. Square Root of ΔP ($$	ΔP)		0.605	0.451	0.904	"H ₂ O
4. Barometric Pressure ((Pb)		29.90	29.90	29.90	"Hg
5. Static Pressure (Pstati	c)		-0.30	-0.12	-0.55	"H ₂ O
6. Stack Pressure (Ps)			29.88	29.89	29.86	"H ₂ O
7. Stack Gas:						
Moisture (H	H ₂ O)	M.W.= 18	5.19	2.23	4.46	%
Oxygen (O	2)	M.W.= 32	20.90	20.90	20.90	%
Carbon Dic	oxide (CO ₂)	M.W.= 44	0.04	0.04	0.04	%
Carbon Mo	noxide (CO)	M.W.= 28	0.00	0.00	0.00	%
Other:		M.W.=	0.00	0.00	0.00	%
Nitrogen (N	J ₂)	M.W.= 28	79.06	79.06	79.06	%
8. Mol. Weight of Stack	Gas (MWs)	Γ	28.28	28.60	28.36	g/g-mol
9. Stack Dimention	Diameter or Wi	dth	60.0	84.0	70.0	in
	Le	ngth	#N/A	#N/A	#N/A	lin
10. Area of Stack (As)			19.635	38.485	26.725	ft^2
11. Pitot Tube Factor (C	^c p)		0.84	0.84	0.84	
Stack Gas Velocity		Г	35.28	25.49	52.39	∃ft/s
Actual Flow Rate		-	41.568	58.866	84.016	ACFM
Standard Flow Rat	te		37,287	57,312	76,681	DSCFM

WHERE:

Bws = % Moisture / 100 MWs = Molecular Weight of Stack Gas (wet-basis) THC, ppm as methane (Wet)-M25A ΔP = Pitot Differential Pressure

CALCULATIONS:

$$\begin{split} MWs &= MWd * (1-Bws) + 18 (Bws) \\ MWd &= .44(\%CO_2) + .32(\%O_2) + .28(\%CO+\%N_2) + (\%Other*M.W./100) \\ Ps &= (Pstatic / 13.6) + Pb \\ As &= (Diameter / 24)^2 * \Pi - for Round Stacks; Length * Width / 144 - for Rectangular Stacks \\ Vs &= 85.49 * Cp * \sqrt{\Delta P} * \sqrt{((Ts + 460) / (Ps x MWs))} \\ ACFM &= 60 * Vs * As \\ DSCFM &= 60 (1-Bwo) * Vs * As * (Tstd + 460)/(Ts + 460) * (Ps/29.92) \end{split}$$

STACK MOISTURE DETERMINATION

using wet bulb / dry bulb - OUTLET

	using	, wet build r dig	0010 001			
Facility:	Sacramento Rendering Co	э.				
Unit:	Scrubbers # 1, 2 & 3					
Condition:	Maximum Operation					
Date:			5/3/2017	4/26/2017	5/3/2017	
		Scrubberg #	1	2	3	
			1	4	1021	
		Time:	1217	1339	1031	
1. Dry Bulb Stack	Temperature, (t)		97.30	69.70	91.60	°F
2. Wet Bulb Tem	perature, (tw)		75.0	64.0	76.0	°F
3. Barometric Pre	essure (Pb)		29.90	29.90	29.90	" Hg
4. Static Pressure	(Pstatic)		-0.30	-0.12	-0.55	" H ₂
5. Stack Absolute	Pressure (Ps)		29.88	29.89	29.86	" Hg
			0.084	0.500	0.004	11 77

- 6. Saturated Vapor Pressure, (SVP @tw)
- 7. Saturated Vapor Pressure, (SVP @t)

Percent of H₂O in Stack Gas @ Saturation (% H₂Osat) Percent of H₂O in Stack Gas (% H₂O)

Relative Humidity Dewpoint

"Hg 0.874 0.599 0.904 1.798 0.730 1.504 "Hg 2.23 % 5.19 4.46 2.1 1.8 2.4 % % 40.4 80.4 54.9 75.0 64.0 76.0 °F

WHERE

 H_2O = Inches of water Hg = Inches of Mercury °F = Fahrenheit

CALCULATIONS

Ps = Pb + (Pstatic/13.6)

SVP @tw = EXP(-0.0000573tw² + 0.042232tw - 2.97986)

% $H_2Osat = 100 * {SVP @t - (3.667E-04 * Ps * (t-tw) * (1 + (0.000639(t-tw)))}/Ps$

% $H_2O = 100 * {SVP @tw - (3.667E-04 * Ps * (t-tw) * (1 + (0.000639(t-tw)))}/Ps$

% R.H. = 100 * % H2O / % H2Osat

Dewpoint = wet bulb temperature

STACK GAS FLOW RATE DETERMINATION -- PITOT TRAVERSE

Facility: Unit:	Sacramento Rendering (Scrubber #4 (Permit #18423)	Co.				
Condition:	Maximum Operation					
Date:	4/26/2017		10.50	11.05	10.00	
Time:			10:50 Pup 1	11:25 Bun 2	12:03 Run 3	
			Kull I	Run 2	Kull 5	
1. Tempera	ture of Stack (Ts)		60.80	62.15	64.90	°F
2. Std Temp	perature (Tstd)		68	68	68	°F
3. Square R	.oot of ΔP ($\sqrt{\Delta P}$)		0.503	0.493	0.503	"H ₂ O
4. Baromet	ric Pressure (Pb)		29.90	29.90	29.90	"Hg
5. Static Pro	essure (Pstatic)		-0.30	-0.30	-0.30	"H ₂ O
6. Stack Pre	essure (Ps)		29.88	29.88	29.88	"H ₂ O
7. Stack Ga	S:					
	Moisture (H ₂ O)	M.W.= 18	1.62	1.62	1.82	%
	Oxygen (O ₂)	M.W.= 32	20.90	20.90	20.90	%
	Carbon Dioxide (CO ₂)	M.W.= 44	0.04	0.04	0.04	%
	Carbon Monoxide (CO)	M.W.= 28	0.00	0.00	0.00	%
	Other:	M.W.=	0.00	0.00	0.00	%
	Nitrogen (N ₂)	M.W.= 28	79.06	79.06	79.06	%
8, Mol. We	ight of Stack Gas (MWs)		28.67	28.67	28.65	g/g-mol
9. Stack Dir	mention Diameter or V	Vidth	81.0	81.0	81.0	in
	I	Length	#N/A	#N/A	#N/A	in
10. Area of	Stack (As)		35.785	35.785	35.785	ft^2
11. Pitot Tu	ibe Factor (Cp)		0.84	0.84	0.84	
				·		
Stack Ga	s Velocity		28.17	27.64	28.29	ft/s
Actual F	low Rate		60,476	59.350	60.736	IACFM

60,236

58,961

59,901

DSCFM

WHERE:

Bws = % Moisture / 100 MWs = Molecular Weight of Stack Gas (wet-basis) THC, ppm as methane (Wet)-M25A ΔP = Pitot Differential Pressure

CALCULATIONS:

Standard Flow Rate

$$\begin{split} MWs &= MWd*(1\text{-}Bws) + 18 \text{ (Bws)} \\ MWd &= .44(\%CO_2) + .32(\%O_2) + .28(\%CO+\%N_2) + (\%Other*M.W./100) \\ Ps &= (Pstatic / 13.6) + Pb \\ As &= (Diameter / 24)^2*\Pi \text{ - for Round Stacks; Length * Width / 144 - for Rectangular Stacks} \\ Vs &= 85.49*Cp*\sqrt{\Delta P}*\sqrt{((Ts + 460) / (Ps x MWs))} \\ ACFM &= 60*Vs*As \\ DSCFM &= 60 (1\text{-}Bwo) * Vs*As*(Tstd + 460)/(Ts + 460) * (Ps/29.92) \end{split}$$

STACK MOISTURE DETERMINATION

using wet bulb / dry bulb - OUTLET

mento Rendering Co.
ber #4 (Permit #18423)
num Operation
2017

Run: Time:	1 - Outlet 1050	2 - Outlet 1125	3 - Outlet 1203	
1. Dry Bulb Stack Temperature, (t)	60.80	62.15	64.90] °F
2. Wet Bulb Temperature, (tw)	56.0	55.0	58.0	°F
3. Barometric Pressure (Pb)	29.90	29.90	29.90] " Hg
4. Static Pressure (Pstatic)	-0.30	-0.30	-0.30	" H ₂ 0
5. Stack Absolute Pressure (Ps)	29.88	29.88	29.88] " Hg
6. Saturated Vapor Pressure, (SVP @tw)	0.452	0.436	0.485	" Hg
7. Saturated Vapor Pressure, (SVP @t)	0.536	0.562	0.619	" Hg
Percent of H ₂ O in Stack Gas @ Saturation (% H ₂ Osat)	1.62	1.62	1.82	%
Percent of H ₂ O in Stack Gas (% H ₂ O)	1.3	1.2	1.4	%
Relative Humidity	82.6	73.9	75.4	%
Dewpoint	56.0	55.0	58.0	°F

WHERE

 H_2O = Inches of water Hg = Inches of Mercury °F = Fahrenheit

CALCULATIONS

Ps = Pb + (Pstatic/13.6)

SVP $@tw = EXP(-0.0000573tw^2 + 0.042232tw - 2.97986)$

% $H_2Osat = 100 * {SVP @t - (3.667E-04 * Ps * (t-tw) * (1 + (0.000639(t-tw)))}/Ps$

% $H_2O = 100 * {SVP @tw - (3.667E-04 * Ps * (t-tw) * (1 + (0.000639(t-tw)))}/Ps$

% R.H. = 100 * % H2O / % H2Osat

Dewpoint = wet bulb temperature

APPENDIX B LAB REPORTS

CLIENT : Best Environmental PROJECT NAME : Sacramento Rendering Co. AAC PROJECT NO. : 170590 REPORT DATE : 05/10/2017

On May 8, 2017, Atmospheric Analysis & Consulting, Inc. received two (2) Six-Liter Summa Canisters for Volatile Organic Compounds analysis by EPA method TO-15. Upon receipt each sample was assigned a unique Laboratory ID number as follows:

Client ID	Lab ID	Return Pressure (mmHga)
Run 1, Scrubber #3	170590-98594	482.3
Run 1, Scrubber #1	170590-98595	463.5

All of the analyses mentioned above were performed in accordance with AAC's ISO/IEC 17025:2005 and NELAP approved Quality Assurance Plan. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Laboratory Director or his/her designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Marcus Hueppe Laboratory Director

This report consists of 11 pages.

Laboratory Analysis Report

CLIENT	:	Best Environmental
PROJECT NO	:	170590
MATRIX	:	AIR
UNITS	:	PPB (v/v)

DATE	RECEIVED
DATE	REPORTED

: 05/08/2017 : 05/10/2017

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Run 1, Scrubber #3		Run 1, Scrubber #1						
AACID	170590-98594		Sample	170590-98595			Sample Method		
Date Sampled		05/03/201	7	Reporting	05/03/2017			Reporting	Reporting
Date Analyzed		05/10/201	7	Limit (SRL) 05/10/2017		Limit (SRL)	L) Limit		
Can Dilution Factor		2.13		(MRLxDF's)		2.19		(MRLxDF's)	(MRL)
	Result	Qualifier	Analysis DF		Result	Qualifier	Analysis DF	(((),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chlorodifluoromethane	_ <srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Propene 44.40 CB	<srl< td=""><td>U</td><td>2.0</td><td>4.3</td><td>5.03</td><td></td><td>2.0</td><td>4.4</td><td>1.0</td></srl<>	U	2.0	4.3	5.03		2.0	4.4	1.0
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Chloromethane 50.99 C	<srl< td=""><td><u>U</u>.</td><td>2.0</td><td>2.1</td><td>3.07</td><td></td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	<u>U</u> .	2.0	2.1	3.07		2.0	2.2	0.5
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Vinyl Chloride	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Methanol 32. C	<srl< td=""><td>U -</td><td>2.0</td><td>21.3</td><td>99.3</td><td>Collage and</td><td> 2.0 .</td><td>21.9</td><td>5.0</td></srl<>	U -	2.0	21.3	99.3	Collage and	2.0 .	21.9	5.0
1,3-Butadiene	<srl< td=""><td>U</td><td>2.0</td><td>2,1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0,5</td></srl<></td></srl<>	U	2.0	2,1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0,5</td></srl<>	U	2.0	2.2	0,5
Bromomethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl:< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl:<></td></srl<>	U	2.0	2.1	<srl:< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl:<>	U	2.0	2.2	0.5
Chloroethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Dichlorofluoromethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Ethanol 46.07 cz	124		2.0	8.5	643		20.0	87.8	2.0
Vinyl Bromide	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Acetone <2.08 C3	35.7		2.0	8.5	131	V	20.0	87.8	2.0
Trichlorofluoromethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
2-Propanol (IPA)	<srl< td=""><td>U</td><td>2.0</td><td>8.5</td><td><srl< td=""><td>U</td><td>2.0</td><td>8.8</td><td>2.0</td></srl<></td></srl<>	U	2.0	8.5	<srl< td=""><td>U</td><td>2.0</td><td>8.8</td><td>2.0</td></srl<>	U	2.0	8.8	2.0
Acrylonitrile	<srl< td=""><td>U</td><td>. 2.0</td><td>4.3</td><td><srl< td=""><td>U</td><td>2.0</td><td>4.4</td><td>1.0</td></srl<></td></srl<>	U	. 2.0	4.3	<srl< td=""><td>U</td><td>2.0</td><td>4.4</td><td>1.0</td></srl<>	U	2.0	4.4	1.0
1,1-Dichloroethene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>2.0</td><td>4.3</td><td><srl< td=""><td>U</td><td>2.0</td><td>4.4</td><td>1.0</td></srl<></td></srl<>	U	2.0	4.3	<srl< td=""><td>U</td><td>2.0</td><td>4.4</td><td>1.0</td></srl<>	U	2.0	4.4	1.0
Allyl Chloride	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Carbon Disulfide 76.13	<srl< td=""><td>Ū</td><td>2.0</td><td>2.1</td><td>4.34</td><td></td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	Ū	2.0	2.1	4.34		2.0	2.2	0.5
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
1,1-Dichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>Ŭ</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	Ŭ	2.0	2.2	0.5
Vinyl Acetate	<srl< td=""><td>U</td><td>2.0</td><td>4.3</td><td><srl< td=""><td>U</td><td>2.0</td><td>4.4</td><td>1.0</td></srl<></td></srl<>	U	2.0	4.3	<srl< td=""><td>U</td><td>2.0</td><td>4.4</td><td>1.0</td></srl<>	U	2.0	4.4	1.0
2-Butanone (MEK)	8.00		2.0	4.3	19.3		2.0	4.4	1.0
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Hexane 86.18 Cm	2.38		2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Chloroform	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>Ü</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>Ü</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	Ü	2.0	2.2	0.5
Ethyl Acetate - Q XII C2	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>Ŭ</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	Ŭ	2.0	2.2	0.5
Tetrahydrofuran	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>Ū</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>Ū</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	Ū	2.0	2.2	0.5
1,2-Dichloroethane	<srl< td=""><td>U</td><td>- 2.0</td><td>2.1</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	- 2.0	2.1	<srl< td=""><td>Ŭ</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	Ŭ	2.0	2.2	0.5
1,1,1-Trichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5

(*)

Laboratory Analysis Report

CLIENT	:	Best Environmental
PROJECT NO	:	170590
MATRIX	;	AIR
UNITS	:	PPB (v/v)

DATE RECEIV	ED :	05/08/2017
DATE REPORT	ED :	05/10/2017

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Run 1, Scrubber #3		Samala	Sample Run 1, Scrubber #1			Q.,]	Mahaa	
AACID		170590-985	94	Sample	170590-98595			Sample	Ivietnod
Date Samplea		05/03/201	/	Reporting	05/03/2017		<u> </u>	Reporting	Reporting
Date Analyzea	Date Analyzea 05/10/2017		/	Limit (SRL)		05/10/2017	7	Limit (SRL)	Limit
Can Dilution Factor	D	2.13	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	(MRLxDF's)		2.19		(MRLxDF's)	(MRL)
	Result	Qualifier	Analysis DF		Result	Qualifier	Analysis DF		
Benzene	<srl< td=""><td><u> </u></td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>. 0.5</td></srl<></td></srl<>	<u> </u>	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>. 0.5</td></srl<>	U	2.0	2.2	. 0.5
Carbon Tetrachloride	< <u>SRL</u>	U	2,0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Cyclohexane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
1,2-Dichloropropane	< <u>SRL</u>	<u> </u>	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>- 2.2</td><td>0,5</td></srl<>	U	2.0	- 2.2	0,5
Bromodichloromethane	<srl< td=""><td><u> </u></td><td>2.0</td><td>2.1</td><td><<u>SRL</u></td><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	<u> </u>	2.0	2.1	< <u>SRL</u>	U	2.0	2.2	0.5
1,4-Dioxane	<srl< td=""><td><u> </u></td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	<u> </u>	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td>-SRL</td><td>U -</td><td>2.0</td><td>. 2.2</td><td>0.5</td></srl<>	U	2.0	2.1	-SRL	U -	2.0	. 2.2	0.5
2,2,4-Trimethylpentane	< <u>SRL</u>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Heptane boil Co	2,96		2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>- 2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>- 2.0</td><td>2.2</td><td>0.5</td></srl<>	U	- 2.0	2.2	0.5
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
trans-1,3-Dichloropropene	<u> <srl< u=""></srl<></u>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0,5</td></srl<>	U	2.0	2.2	0,5
1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Toluene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U U	2.0	2.2	0.5
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U ·</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U ·</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U ·	2.0	2.2	0.5
Dibromochloromethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U ·</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U ·</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U ·	2.0	2.2	0.5
1,2-Dibromoethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Chlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Ethylbenzene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0,5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0,5</td></srl<>	U	2.0	2.2	0,5
m & p-Xylenes	<srl< td=""><td>U</td><td>2.0</td><td>4.3</td><td><srl< td=""><td>U</td><td>2.0</td><td>4.4</td><td>1.0</td></srl<></td></srl<>	U	2.0	4.3	<srl< td=""><td>U</td><td>2.0</td><td>4.4</td><td>1.0</td></srl<>	U	2.0	4.4	1.0
Bromoform	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Styrene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
1,1,2,2-Tetrachloroethane	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
o-Xylene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0,5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0,5</td></srl<>	U	2.0	2.2	0,5
4-Ethyltoluene	<srl< td=""><td>U .</td><td>2,0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U .	2,0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
1,3,5-Trimethylbenzene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
1,2,4-Trimethylbenzene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
1,3-Dichlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
1,4-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	Ŭ	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
1,2-Dichlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
1,2,4-Trichlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
Hexachlorobutadiene	<srl< td=""><td>U</td><td>2.0</td><td>2.1</td><td><srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<></td></srl<>	U	2.0	2.1	<srl< td=""><td>U</td><td>2.0</td><td>2.2</td><td>0.5</td></srl<>	U	2.0	2.2	0.5
BFB-Surrogate Std. % Recovery		99%				107%		Caldin .	70-130%

U - Compound was analyzed for, but was not detected at or above the SRL.

Marcus Hueppe Laboratory Director

ANALYSIS DATE : 05/10/2017 ANALYST : JJG

INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : PS030917-05

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Continuing Calibration Verification of the 04/11/2017 Calibration

Compounds	Conc	Daily Conc	%REC*
4-BFB (surrogate standard)	10.00	10.30	103
Chlorodifluoromethane	10.40	10.95	105
Propene	10.90	10.81	99
Dichlorodifluoromethane	10.60	11.42	108
Chloromethane	10.30	11.13	108
Dichlorotetrafluoroethane	10.00	10.52	105
Vinyl Chloride	10.10	10.94	108
Methanol	19.00	20.09	106
1,3-Butadiene	10.50	12.17	116
Bromométhané	10.00	10.81	108
Chloroethane	9.70	10.72	111
Dichlorofluoromethane	10.60	11.70	110
Ethanol	9.10	9.56	105
Vinyl Bromide	10.10	11.37	113
Acetone	10.60	12.33	116
Trichlorofluoromethane	10.40	12.46	120
2-Propanol (IPA)	10.80	12.28	114 -
Acrylonitrile	11.50	13.02	113
1,1-Dichloroethene	10.80	11.02	102
Methylene Chloride (DCM)	10.50	10.44	99
Allyl Chloride	11.00	12.13	110
Carbon Disulfide	10.00	10.57	106
Trichlorotrifluoroethane	10.70	11.67	109
trans-1,2-Dichloroethene	10.10	10.62	105
1,1-Dichloroethane	10.50	10.75	102
Methyl Tert Butyl Ether (MTBE)	10.60	11.79	111
Vinyl Acetate	10.80	10.80	100
2-Butanone (MEK)	10.60	10.65	100
cis-1,2-Dichloroethene	10.60	10.70	101
Hexane	10.50	10.73	102
Chloroform	10.90	12.00	110
Ethyl Acetate	10.90	10.96	101
Tetrahydrofuran	10.50	10.54	100
1,2-Dichloroethane	10.60	11.57	109
1.1.1-Trichloroethane	10.60	11.46	108

ANALYSIS DATE : 05/10/2017 ANALYST : JJG

INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : PS030917-05

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15 Continuing Calibration Verification of the 04/11/2017 Calibration

Compaands	Conc	Dally Conc	%REC*
Benzene	10.40	11.28	108
Carbon Tetrachloride	10.80	11.97	111
Cyclohexane	10.50	10.54	100
1,2-Dichloropropane	10.50	10.67	102
Bromodichloromethane	10.40	11.42	110
1,4-Dioxane	10.40	11.01	106
Trichloroethene (TCE)	10.40	11.40	110
2,2,4-Trimethylpentane	10,30	11.54	112
Heptane	10.40	11.23	- 108 -
cis-1,3-Dichloropropene	10.70	11.47	107
4-Methyl-2-pentanone (MiBK)	10.00	10.25	103
trans-1,3-Dichloropropene	10.00	11.21	112
1,1,2-Trichloroethane	10.40	11.20	108
Toluene	10.60	11.67	110
2-Hexanone (MBK)	10.80	10.69	99
Dibromochloromethane	9.90	11.11	112
1,2-Dibromoethane	10.40	11.69	112
Tetrachloroethene (PCE)	10.30	11.78	114
Chlorobenzene	10.50	11.13	106
Ethylbenzene	10.50	11.52	110
m & p-Xylenes	20.00	21.09	105
Bromoform	10.40	11.05	106
Styrene	10.30	10.45	101
1,1,2,2-Tetrachloroethane	10.40	11.22	108
o-Xylene	10.40	10.92	105
4-Ethyltoluene	10.00	10.85	109
1,3,5-Trimethylbenzene	10.00	11.06	111
1,2,4-Trimethylbenzene	9.90	10.21	103
Benzyl Chloride (a-Chlorotoluene)	9.60	9.85	103
1,3-Dichlorobenzene	9,60	9.99	104
1,4-Dichlorobenzene	9.80	10.58	108
1,2-Dichlorobenzene	9.70	10.53	109
1,2,4-Trichlorobenzene	8.80	9.26	105
Hexachlorobutadiene	9.30	9.31	100

* - %REC should be 70-130%

Marcus Hueppe

Laboratory Director

www.aaclab.com • (805) 650-1642 • FAX (805) 6

Quality Control/Quality Assurance Report

CLIENT ID	: Laboratory Control Spike	DATE ANALYZED	: 05/10/2017
AAC ID	: LCS/LCSD	DATE REPORTED	: 05/10/2017
MEDIA	: Air	UNITS	: ppbv

TO-15 Laboratory Control Spike Recovery

Compound	Sample	Spike	Spike	Dup Spike	Spike	Spike Dup	RPD**
Compound	Conc.	Added	Res	Res	% Rec *	% Rec *	%
1,1-Dichloroethene	0.0	10.80	11.02	11.67	102	108	5.7
Methylene Chloride (DCM)	0.0	10.50	10.44	11.25	99	107	7.5
Benzene	0.0	10.40	11.28	11.39	108	110	1.0
Trichloroethene (TCE)	0.0	10.40	11.40	10.88	110	105	4.7
Toluene	0.0	10.60	11.67	12.11	110	114	3.7
Tetrachloroethene (PCE)	0:0	10.30	-11.78	11.04	114	-107	6.5
Chlorobenzene	0.0	10.50	11.13	12.13	106	116	8.6
Ethylbenzene	0.0	10.50	11.52	11.42	110	109	0.9
m & p-Xylenes	0.0	20.00	21.09	21.38	105	107	1.4
o-Xylene	0.0	10.40	10.92	10.63	105	102	2.7

* Must be 70-130%

** Must be < 25%

Marcus Hueppe Laboratory Director

Method Blank Analysis Report

MATRIX	: AIR	ANALYSIS DATE	: 05/10/2017
UNITS	: ppbv	REPORT DATE	: 05/10/2017
-			

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID AACID	Method Blank MB 051017	RL
Chlorodifluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Propene	<rl< td=""><td>1.0</td></rl<>	1.0
Dichlorodifluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Chloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Vinyl Chloride	<rl< td=""><td>0.5</td></rl<>	0.5
Methanol	<rl< td=""><td>5.0</td></rl<>	5.0
1,3-Butadiene	<rl< td=""><td>0.5</td></rl<>	0.5
Bromomethane	<rl< td=""><td>0,5</td></rl<>	0,5
Chloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Dichlorofluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Ethano]	<rl< td=""><td>2.0</td></rl<>	2.0
Vinyl Bromide	<rl< td=""><td>0.5</td></rl<>	0.5
Acetone	<rl< td=""><td>2.0</td></rl<>	2.0
Trichlorofluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5
2-Propanol (IPA)	<rl< td=""><td>2.0</td></rl<>	2.0
Acrylonitrile	<rl< td=""><td>1.0</td></rl<>	1.0
1,1-Dichloroethene	<rl< td=""><td>0.5</td></rl<>	0.5
Methylene Chloride (DCM)	<rl< td=""><td>1.0</td></rl<>	1.0
Allyl Chloride	<rl< td=""><td>0.5</td></rl<>	0.5
Carbon Disulfide	<rl< td=""><td>0.5</td></rl<>	0.5
Trichlorotrifluoroethane	<rl< td=""><td>0.5</td></rl<>	0.5
trans-1,2-Dichloroethene	<rl< td=""><td>0.5</td></rl<>	0.5
1,1-Dichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Methyl Tert Butyl Ether (MTBE)	<rl< td=""><td>0,5</td></rl<>	0,5
Vinyl Acetate	<rl< td=""><td>1.0</td></rl<>	1.0
2-Butanone (MEK)	<rl< td=""><td>1.0</td></rl<>	1.0
cis-1,2-Dichloroethene	<rl< td=""><td>0,5</td></rl<>	0,5
Hexane	<rŀ< td=""><td>0.5</td></rŀ<>	0.5
Chloroform	<rl< td=""><td>0.5</td></rl<>	0.5
Ethyl Acetate	<rl< td=""><td>0.5</td></rl<>	0.5
Tetrahydrofuran	<rl< td=""><td>0.5</td></rl<>	0.5
1,2-Dichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
1,1,1-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Benzene	<rl< td=""><td>0.5</td></rl<>	0.5
Carbon Tetrachloride	<rl< td=""><td>0.5</td></rl<>	0.5
Cyclohexane	<rl< td=""><td>0.5</td></rl<>	0.5
1,2-Dichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Bromodichloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
1,4-Dioxane	<rl< td=""><td>0.5</td></rl<>	0.5
Trichloroethene (TCE)	<rl< td=""><td>0.5</td></rl<>	0.5
2,2,4-Trimethylpentane	<rl:< td=""><td>0.5</td></rl:<>	0.5
Heptane	<rl< td=""><td>0.5</td></rl<>	0.5

www.aaclab.com • (805) 650-1642 • FAX (805) 650-464

Method Blank Analysis Report

MATRIX	: AIR	ANALYSIS DATE	: 05/10/2017
UNITS	: ppbv	REPORT DATE	: 05/10/2017

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Method Blank	DI
AAC ID	MB 051017	KL
cis-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
4-Methyl-2-pentanone (MiBK)	<rl< td=""><td>0.5</td></rl<>	0.5
trans-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
1,1,2-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Toluene	<rl< td=""><td>0.5</td></rl<>	0.5
2-Hexanone (MBK)	<rl< td=""><td>0,5</td></rl<>	0,5
Dibromochloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
1,2-Dibromoethane	<rl< td=""><td>0.5</td></rl<>	0.5
Tetrachloroethene (PCE)	<rl< td=""><td>0.5</td></rl<>	0.5
Chlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Ethylbenzene	<rl< td=""><td>0,5</td></rl<>	0,5
m & p-Xylenes	<rl< td=""><td>1.0</td></rl<>	1.0
Bromoform	<rl< td=""><td>0.5</td></rl<>	0.5
Styrene	<rl< td=""><td>0.5</td></rl<>	0.5
1,1,2,2-Tetrachloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
o-Xylene	<rl< td=""><td>0.5</td></rl<>	0.5
4-Ethyltoluene	<rl< td=""><td>0.5</td></rl<>	0.5
1,3,5-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,2,4-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Benzyl Chloride (a-Chlorotoluene)	<rl< td=""><td>0.5</td></rl<>	0.5
1.3-Dichlorobenzene	<rl< td=""><td>0,5</td></rl<>	0,5
1,4-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,2-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,2,4-Trichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Hexachlorobutadiene	<rl< td=""><td>0.5</td></rl<>	0.5
System Monitoring Co	ompounds	
BFB-Surrogate Std. % Recovery	97%	

 (\mathbf{x})

RL - Reporting Limit

Marcus Hueppe Laboratory Director

1534 Eastman Ave., Ste. A • Ventura, • CA 93003

Quality Control/Quality Assurance Report

AAC ID	: 170590-98595	DATE ANALYZED	:	05/10/2017
MATRIX	: Air	DATE REPORTED	:	05/10/2017
18 · · ·		UNITS	:	ppbv

TO-15 Duplicate Analysis

Compound	Sample. Conc	Duplicate Conc	% RPD
Chlorodifluoromethane	<srl< td=""><td>SRL <</td><td>0.0</td></srl<>	SRL <	0.0
Propene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dichlorodifluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chloromethane	<srl td="" ·<=""><td><srl< td=""><td>0.0</td></srl<></td></srl>	<srl< td=""><td>0.0</td></srl<>	0.0
Dichlorotetrafluoroethane	<srl< td=""><td><srl< td=""><td>0,0</td></srl<></td></srl<>	<srl< td=""><td>0,0</td></srl<>	0,0
Vinyl Chloride	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Methanol	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,3-Butadiene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Bromomethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dichlorofluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Ethanol	643	611	5.1
Vinyl Bromide	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Acetone	131	138	5.2
Trichlorofluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Propanol (IPA)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Acrylonitrile	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1-Dichloroethene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Methylene Chloride (DCM)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Allyl Chloride	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Carbon Disulfide	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Trichlorotrifluoroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
trans-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1-Dichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Vinyl Acetate	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Butanone (MEK)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
cis-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Hexane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chloroform	<srl< td=""><td><srl< td=""><td>0,0</td></srl<></td></srl<>	<srl< td=""><td>0,0</td></srl<>	0,0
Ethyl Acetate	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Tetrahydrofuran	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2-Dichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1,1-Trichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Benzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Carbon Tetrachloride	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0

Quality Control/Quality Assurance Report

AAC ID	: 170590-98595	DATE ANALYZED	: 05/10/2017
MATRIX	: Air	DATE REPORTED	: 05/10/2017
		UNITS	: ppbv

TO-15 Duplicate Analysis

Compound	Sample Conc	Duplicate Conc	% RPD
Cyclohexane	<srl< td=""><td><srl< td=""><td>0:0 -</td></srl<></td></srl<>	<srl< td=""><td>0:0 -</td></srl<>	0:0 -
1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Bromodichloromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,4-Dioxane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Trichloroethene (TCE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Heptane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
trans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1,2-Trichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Toluene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dibromochloromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2-Dibromoethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Ethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
m & p-Xylenes	<srl *<="" td=""><td><srl< td=""><td>0.0</td></srl<></td></srl>	<srl< td=""><td>0.0</td></srl<>	0.0
Bromoform	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Styrene	<srl< td=""><td><srl< td=""><td>- 0.0</td></srl<></td></srl<>	<srl< td=""><td>- 0.0</td></srl<>	- 0.0
1,1,2,2-Tetrachloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
o-Xylene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
4-Ethyltoluene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,3,5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2,4-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,4-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2,4-Trichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Hexachlorobutadiene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
System Monitoring Compounds			
BFB-Surrogate Std. % Recovery	100%	100%	0.2

SRL - Sample Reporting Limit

Marcus Hueppe Laboratory Director

Be	at Environmental	1.1						Ph (925) 455-9474; Fx	(925) 455-9479
	Project ID:	065021	Sacramento Rendering Co.	SAMPLE CHAI	N OF C	USTODY	BE PROJECT MAN	AGER:	
#	Analyical Lad: DATE	TIME Start/Stop	AAC SAMPLE ID Run#/Source/Canister #	CONTAINER size / type	Vacuum Final	Storage Temp ^o F	SAMPLE DESCRIPTION	ANALYSIS	TAT
Γ_	05/03/17	1031/1201	Run 1, Scrubber #3, 000505 78554	6L/SUMMA	10 Hg	Ambient	Exhaust Gas	TO-15	NORMAL
14	05/03/17	1217/1247	Run 1, Scrubber #1, 000393 93595	6L/SUMMA	10 Hg	Ambient	Exhaust Gas	TO-15	NORMAL
e)									
									14
30									
5									
10									
=									
11									
8									
14									
ï									
1(
8									
15									
1									
5				2					
2]			,						
SP	ECIAL INSTRU	ICTIONS: Rec	ord & Report all liquid sample volumes.			~			
			1,						
Su	bmit Results to: /	Attn: Jim McCo	ormac#///		BES	T ENVIRO	NMENTAL 339 Stealth Court, Liverm	lore, CA. 94551	
	Relinquished by:-) ~ M Canape	W CotHAT Received by:				Date: Time:		
.3	Relinquished by:		At a 1340 Received by:	5 1 1 1			Date: Time: Time: $S/x/h$ Time: $h/57$		
	TAMPI F CONDIT	LION AS DECEIVA	PD. OV as and OV)			-	
	12						55		
1)								

÷

CLIENT: Best EnvironmentalPROJECT NAME: Sacramento Rendering Co.AAC PROJECT NO.: 170560REPORT DATE: 05/02/2017

On May 1, 2017, Atmospheric Analysis & Consulting, Inc. received four (4) Six-Liter Summa Canisters for Volatile Organic Compounds analysis by EPA method TO-15. Upon receipt each sample was assigned a unique Laboratory ID number as follows:

Client ID	Lab ID	Return Pressure (mmHga)
Run 1, Scrubber #4	170560-98489	617.3
Run 2, Scrubber #4	170560-98490	591.8
Run 3, Scrubber #4	170560-98491	557.6
Run 1, Scrubber #2	170560-98492	537.2

All of the analyses mentioned above were performed in accordance with AAC's ISO/IEC 17025:2005 and NELAP approved Quality Assurance Plan. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Laboratory Director or his/her designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Marcus Hueppe Laboratory Director

This report consists of 13 pages.

Laboratory Analysis Report

CLIENT	:	Be
PROJECT NO	:	17(
MATRIX	:	AI
UNITS	:	PP

: Best Environmental : 170560 : AIR : PPB (v/v)

DATE RECEIVED	:	05/01/2017
DATE REPORTED	:	05/02/2017

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	F	tun 1, Scrubt	er #4	Served a	Run 2, Scrubber #4 170560-98490 04/26/2017			6).	Method Reporting
AACID		170560-984	89	Sample				Sample	
Date Sampled		04/26/201	7	Reporting				Reporting	
Date Analyzeu		05/02/201	7	Limit (SRL)		05/02/201	7	Limit (SRL)	Limit (MRL)
Can Dilution Factor		1.65		(MRLxDF's)		1.75		(MRLxDF's)	
	Result	Qualifier	Analysis DF		Result	Qualifier	Analysis DF		
Chlorodifluoromethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td><u> </u></td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td><u> </u></td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	<u> </u>	2.0	1.8	0.5
Propene 92.08 17-10 C3	4.24		2.0	3.3	<srl< td=""><td>U</td><td>2.0</td><td>3.5</td><td>1.0</td></srl<>	U	2.0	3.5	1.0
Dichlorodifluoromethane	<srl< td=""><td><u> </u></td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	<u> </u>	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Chloromethane 50.49 Cl	7.44		2,0	1.7	3.51		2.0	1.8	0.5
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>- 2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>- 2.0</td><td>1.8</td><td>0.5</td></srl<>	U	- 2.0	1.8	0.5
Vinyl Chloride	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Methanol	<srl< td=""><td>U</td><td>. 2.0</td><td>16.5</td><td><pre><srl< pre=""></srl<></pre></td><td>U</td><td>2.0</td><td>17.5</td><td>5.0</td></srl<>	U	. 2.0	16.5	<pre><srl< pre=""></srl<></pre>	U	2.0	17.5	5.0
1,3-Butadiene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Bromomethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Chloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Dichlorofluoromethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Ethanol 46.07 C2	51.6		2.0	6.6	87.4		2.0	7.0	2.0
Vinyl Bromide	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Acetone 58.08 (3	44.5		2.0	6.6	27.8		2.0	7.0	2.0
Trichlorofluoromethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
2-Propanol (IPA)	<srl< td=""><td>U</td><td>2.0</td><td>6.6</td><td><srl< td=""><td>U.</td><td>2.0</td><td>7.0</td><td>2.0</td></srl<></td></srl<>	U	2.0	6.6	<srl< td=""><td>U.</td><td>2.0</td><td>7.0</td><td>2.0</td></srl<>	U.	2.0	7.0	2.0
Acrylonitrile	<srl< td=""><td>U</td><td>2.0</td><td>3.3</td><td><srl< td=""><td>U</td><td>2.0</td><td>3.5</td><td>1.0</td></srl<></td></srl<>	U	2.0	3.3	<srl< td=""><td>U</td><td>2.0</td><td>3.5</td><td>1.0</td></srl<>	U	2.0	3.5	1.0
1,1-Dichloroethene	<srl< td=""><td>U</td><td>2,0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2,0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>2.0</td><td>3.3</td><td><srl< td=""><td>U</td><td>2.0</td><td>3.5</td><td>1.0</td></srl<></td></srl<>	U	2.0	3.3	<srl< td=""><td>U</td><td>2.0</td><td>3.5</td><td>1.0</td></srl<>	U	2.0	3.5	1.0
Allyl Chloride	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Carbon Disulfide	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2,0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2,0</td><td>1.8</td><td>0.5</td></srl<>	U	2,0	1.8	0.5
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
1,1-Dichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Vinyl Acetate	<srl< td=""><td>U</td><td>2.0</td><td>3.3</td><td><srl< td=""><td>U</td><td>2.0</td><td>3.5</td><td>1.0</td></srl<></td></srl<>	U	2.0	3.3	<srl< td=""><td>U</td><td>2.0</td><td>3.5</td><td>1.0</td></srl<>	U	2.0	3.5	1.0
2-Butanone (MEK)	26.9		2.0	3.3	16.5		2.0	3.5	1.0
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Hexane X6116 CL	2.09		2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Chloroform	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Ethyl Acetate XX. 11 (2)	2.51		2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Tetrahydrofuran	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	Ŭ	2.0	1.8	0.5
1.2-Dichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	Ŭ	2.0	1.8	0.5
1,1,1-Trichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5

Laboratory Analysis Report

CLIENT PROJECT NO	:	Best Environmental 170560
MATRIX UNITS	::	AIR PPB (v/v)

DATE	RECEIVED	:	05/01/2
DATE	REPORTED	:	05/02/2

2017 2017

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	R	un 1, Scrubb	er #4	Sample	R	un 2, Scrubb	er #4	Sample	Method
Data Sampled		04/26/201	7	Panorting	04/26/2017			Penorting	Paparting
Date Analyzed		05/02/201	7	Keporting		05/02/201	7	Keporting	Timit
Con Dilution Faster		1.65	/	Limit (SRL)		1 75	/	Limit (SKL)	Limit
Can Dilation Factor	Docult	Qualifiar	Anolusie DE	(MRLxDF's)	Decult	Qualifian	Analysis DE	(MRLxDF's)	(MRL)
D	-SDI	Quanner	Analysis DF	17	CDI	<u>Vuanner</u>	Analysis Dr	1.0	0.5
Benzene	<skl< td=""><td>0</td><td>2.0</td><td>1.7</td><td>SRL</td><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></skl<>	0	2.0	1.7	SRL	U	2.0	1.8	0.5
Carbon Tetrachloride	<srl< td=""><td><u> </u></td><td>2.0</td><td>1.7</td><td>SKL</td><td></td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	<u> </u>	2.0	1.7	SKL		2.0	1.8	0.5
Cyclohexane	<srl< td=""><td>U</td><td>2.0</td><td>1./</td><td><skl< td=""><td>L U</td><td>2.0</td><td>1.8</td><td>0.5</td></skl<></td></srl<>	U	2.0	1./	<skl< td=""><td>L U</td><td>2.0</td><td>1.8</td><td>0.5</td></skl<>	L U	2.0	1.8	0.5
1,2-Dichloropropane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Bromodichloromethane	<srl< td=""><td>0</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	0	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
1,4-Dioxane	< <u>SRL</u>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Trichloroethene (TCE)	<srl.< td=""><td><u>U</u> -</td><td>- 2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl.<>	<u>U</u> -	- 2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td></td><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.7		U	2.0	1.8	0.5
Heptane / 6 0 . 2 . C. 7 4	3.86		2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
trans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Toluene 92.14 C6	1.86		2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0,5</td></srl<>	U	2.0	1.8	0,5
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>2,0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2,0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Dibromochloromethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
1.2-Dibromoethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Chlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Ethylbenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
m & p-Xylenes	<srl< td=""><td>U</td><td>2.0</td><td>3.3</td><td><srl< td=""><td>Ü</td><td>2.0</td><td>3.5</td><td>1.0</td></srl<></td></srl<>	U	2.0	3.3	<srl< td=""><td>Ü</td><td>2.0</td><td>3.5</td><td>1.0</td></srl<>	Ü	2.0	3.5	1.0
Bromoform	<srl< td=""><td>Ũ</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	Ũ	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Styrene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
1.1.2.2-Tetrachloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
o-Xvlene	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	Ŭ	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
4-Ethyltoluene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
1.3.5-Trimethylbenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
1.2.4-Trimethylbenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
1.3-Dichlorobenzene	<srl< td=""><td>Ū</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>Ū</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	Ū	2.0	1.7	<srl< td=""><td>Ū</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	Ū	2.0	1.8	0.5
1.4-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	Ŭ	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
1.2-Dichlorobenzene	<srl< td=""><td>Ū</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	Ū	2.0	1.7	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	Ŭ	2.0	1.8	0.5
1.2.4-Trichlorobenzene	<srl< td=""><td>Ũ</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	Ũ	2.0	1.7	<srl< td=""><td>U</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	U	2.0	1.8	0.5
Hexachlorobutadiene	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.7</td><td><srl< td=""><td>Ū</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<></td></srl<>	Ŭ	2.0	1.7	<srl< td=""><td>Ū</td><td>2.0</td><td>1.8</td><td>0.5</td></srl<>	Ū	2.0	1.8	0.5
BFB-Surrogate Std. % Recovery		102%				104%		70-130%	

U - Compound was analyzed for, but was not detected at or above the SRL.

10 Marcus Hueppe Laboratory Director

Laboratory Analysis Report

CLIENT	:	Best Environmental
PROJECT NO	:	170560
MATRIX	:	AIR
UNITS	:	PPB (v/v)

DATE RECEIVED	: 05/01/2017
DATE REPORTED	: 05/02/2017

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	R	un 3, Scrubt	per #4	Sample	R	Sample	Method		
Data Samulad	04/26/2017			Paparting		Reporting	Departing		
Date Sumplea Date An abread				Reporting			Keporting		
Can Dilution Factor		1 97	/	Limit (SRL)		1 90	<u> </u>	Limit (SRL)	Limit
Can Dianon Tucip	Dogult	Qualifiar	Analysis DF	(MRLxDF's)	Degult Qualifier Analysis DE			(MRLxDF's)	(MRL)
Chlorodifluoromethane	<sri< td=""><td>Ulannei</td><td>2 0</td><td>10</td><td><sdi< td=""><td>Juanner</td><td>20</td><td>10</td><td>0.5</td></sdi<></td></sri<>	Ulannei	2 0	10	<sdi< td=""><td>Juanner</td><td>20</td><td>10</td><td>0.5</td></sdi<>	Juanner	20	10	0.5
Propene	<sri< td=""><td>U U</td><td>2.0</td><td>3.7</td><td><sri< td=""><td>U U</td><td>2.0</td><td>3.9</td><td>1.0</td></sri<></td></sri<>	U U	2.0	3.7	<sri< td=""><td>U U</td><td>2.0</td><td>3.9</td><td>1.0</td></sri<>	U U	2.0	3.9	1.0
Dichlorodifluoromethane	<sri< td=""><td><u> </u></td><td>2.0</td><td>10</td><td>CORL</td><td>U</td><td>2.0</td><td>1.0</td><td>0.5</td></sri<>	<u> </u>	2.0	10	CORL	U	2.0	1.0	0.5
Chloromethane 50: 49 CV	4 10	<u> </u>	2.0	1.9	2.64	0	2.0	1.9	0.5
Dichlorotetrafluoroethane	<sri< td=""><td>U</td><td>2.0</td><td>1.9</td><td><sbi< td=""><td>TT TT</td><td>2.0</td><td>1.9</td><td>0,5</td></sbi<></td></sri<>	U	2.0	1.9	<sbi< td=""><td>TT TT</td><td>2.0</td><td>1.9</td><td>0,5</td></sbi<>	TT TT	2.0	1.9	0,5
Vipyl Chloride	<sri< td=""><td>U U</td><td>2.0</td><td>1.9</td><td><sri <sri< td=""><td>TI</td><td>2.0</td><td>1.9</td><td>0.5</td></sri<></sri </td></sri<>	U U	2.0	1.9	<sri <sri< td=""><td>TI</td><td>2.0</td><td>1.9</td><td>0.5</td></sri<></sri 	TI	2.0	1.9	0.5
Mathanol 72	<sbi< td=""><td> TT</td><td>2.0</td><td>187</td><td>315</td><td>U</td><td>10.0</td><td>04.4</td><td>0.5</td></sbi<>	TT	2.0	187	315	U	10.0	04.4	0.5
1 3-Butadiene	<sbi< td=""><td><u> </u></td><td>2.0</td><td>10.7</td><td><915 <911</td><td>TI</td><td>20</td><td>10</td><td>0.5</td></sbi<>	<u> </u>	2.0	10.7	<915 <911	TI	20	10	0.5
Bromomethane	<sri< td=""><td>U U</td><td>2.0</td><td>1.9</td><td></td><td></td><td>2.0</td><td>1.9</td><td>0.5</td></sri<>	U U	2.0	1.9			2.0	1.9	0.5
Chloroethane	<sri< td=""><td>U</td><td>2.0</td><td>1.9</td><td></td><td>II</td><td>2.0</td><td>1.9</td><td>0.5</td></sri<>	U	2.0	1.9		II	2.0	1.9	0.5
Dichlorofluoromethane	<sri< td=""><td>U U</td><td>2.0</td><td>1.9</td><td>ZORL</td><td>1 M</td><td>2.0</td><td>1.9</td><td>0.5</td></sri<>	U U	2.0	1.9	ZORL	1 M	2.0	1.9	0.5
Ethanol (1/4:0) ()	95.7	0	2.0	75	580		10.0	1.7	2.0
Vinyl Bromide	<sri< td=""><td>L1</td><td>2.0</td><td>10</td><td><sri< td=""><td>II</td><td>2.0</td><td>10</td><td>0.5</td></sri<></td></sri<>	L1	2.0	10	<sri< td=""><td>II</td><td>2.0</td><td>10</td><td>0.5</td></sri<>	II	2.0	10	0.5
Acetone < 2 0 8 C 7	24.9		2.0	7.5	517		10.0	37.8	2.0
Trichlorofluoromethane	<srl< td=""><td>II</td><td>2.0</td><td>19</td><td><sri< td=""><td>1 II</td><td>2.0</td><td>10</td><td>0.5</td></sri<></td></srl<>	II	2.0	19	<sri< td=""><td>1 II</td><td>2.0</td><td>10</td><td>0.5</td></sri<>	1 II	2.0	10	0.5
2-Propanol (IPA)	<sri.< td=""><td>U U</td><td>2.0</td><td>7.5</td><td><sri< td=""><td>U</td><td>2.0</td><td>7.6</td><td>2.0</td></sri<></td></sri.<>	U U	2.0	7.5	<sri< td=""><td>U</td><td>2.0</td><td>7.6</td><td>2.0</td></sri<>	U	2.0	7.6	2.0
Acrylonitrile	<srl< td=""><td>Ŭ</td><td>2.0</td><td>37</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>3.8</td><td>1.0</td></srl<></td></srl<>	Ŭ	2.0	37	<srl< td=""><td>Ŭ</td><td>2.0</td><td>3.8</td><td>1.0</td></srl<>	Ŭ	2.0	3.8	1.0
1 1-Dichloroethene	<srl< td=""><td>Ŭ</td><td>20</td><td>19</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>10</td><td>0.5</td></srl<></td></srl<>	Ŭ	20	19	<srl< td=""><td>Ŭ</td><td>2.0</td><td>10</td><td>0.5</td></srl<>	Ŭ	2.0	10	0.5
Methylene Chloride (DCM)	<srl< td=""><td>Ŭ</td><td>2.0</td><td>37</td><td><sri.< td=""><td>U</td><td>2.0</td><td>3.8</td><td>1.0</td></sri.<></td></srl<>	Ŭ	2.0	37	<sri.< td=""><td>U</td><td>2.0</td><td>3.8</td><td>1.0</td></sri.<>	U	2.0	3.8	1.0
Allyl Chloride	<srl< td=""><td>Ŭ</td><td>2.0</td><td>19</td><td><srl< td=""><td>U U</td><td>2.0</td><td>1.0</td><td>0.5</td></srl<></td></srl<>	Ŭ	2.0	19	<srl< td=""><td>U U</td><td>2.0</td><td>1.0</td><td>0.5</td></srl<>	U U	2.0	1.0	0.5
Carbon Disulfide	<srl< td=""><td>Ū</td><td>2.0</td><td>19</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>19</td><td>0.5</td></srl<></td></srl<>	Ū	2.0	19	<srl< td=""><td>Ŭ</td><td>2.0</td><td>19</td><td>0.5</td></srl<>	Ŭ	2.0	19	0.5
Trichlorotrifluoroethane	<srl< td=""><td>Ŭ</td><td>2.0</td><td>19</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>19</td><td>0.5</td></srl<></td></srl<>	Ŭ	2.0	19	<srl< td=""><td>Ŭ</td><td>2.0</td><td>19</td><td>0.5</td></srl<>	Ŭ	2.0	19	0.5
trans-1.2-Dichloroethene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>Ű</td><td>2.0</td><td>19</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>Ű</td><td>2.0</td><td>19</td><td>0.5</td></srl<>	Ű	2.0	19	0.5
1.1-Dichloroethane	<srl< td=""><td>Ü</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	Ü	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Vinvl Acetate	<srl< td=""><td>Ū</td><td>2.0</td><td>3.7</td><td><srl< td=""><td>Ū</td><td>2.0</td><td>3.8</td><td>1.0</td></srl<></td></srl<>	Ū	2.0	3.7	<srl< td=""><td>Ū</td><td>2.0</td><td>3.8</td><td>1.0</td></srl<>	Ū	2.0	3.8	1.0
2-Butanone (MEK) 72.10 64	13.1		2.0	3.7	18.8		2.0	3.8	1.0
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Hexane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Chloroform	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Ethyl Acetate 28.11 LV	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.9</td><td>2.61</td><td></td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	Ŭ	2.0	1.9	2.61		2.0	1.9	0.5
Tetrahydrofuran	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	Ŭ	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1,2-Dichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>Ŭ</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	Ŭ	2.0	1.9	0.5
1,1,1-Trichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5

www.aaclab.com • (805) 650-1642 • FAX (805) 650-166

: Best Environmental

: 170560 : AIR

: PPB (v/v)

CLIENT PROJECT NO

MATRIX UNITS

Atmospheric Analysis & Consulting, Inc.

Laboratory Analysis Report

DATE RECEIVED	: 05/01/2017
DATE REPORTED	: 05/02/2017

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	R	un 3, Scrubb	er #4	Run 1, Scrubber #2				P	
AAC ID	170560-98491			Sample	170560-98492			Sample	Method
Date Sampled	04/26/2017			Reporting	04/26/2017			Reporting	Reporting
Date Analyzed		05/02/2011	7	Limit (SRL)		05/02/201	7	Limit (SRL)	Limit
Can Dilution Factor		1.87		(MRL TDF's)		1.89		(MRLyDE's)	(MRI.)
	Result	Qualifier	Analysis DF	(Interact of	Result	Qualifier	Analysis DF	(INDICEADE 3)	(IVARCE)
Benzene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Carbon Tetrachloride	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Cyclohexane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1,2-Dichloropropane	<srl< td=""><td>· U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	· U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Bromodichloromethane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1,4-Dioxane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Heptane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0,5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0,5</td></srl<>	U	2.0	1.9	0,5
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
trans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Toluene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Dibromochloromethane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1,2-Dibromoethane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>2,0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2,0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Chlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Ethylbenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
m & p-Xylenes	<srl< td=""><td>U</td><td>2.0</td><td>3.7</td><td><srl< td=""><td>U</td><td>2.0</td><td>3.8</td><td>1.0</td></srl<></td></srl<>	U	2.0	3.7	<srl< td=""><td>U</td><td>2.0</td><td>3.8</td><td>1.0</td></srl<>	U	2.0	3.8	1.0
Bromoform	<srl< td=""><td>Ŭ</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	Ŭ	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Styrene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0,5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0,5</td></srl<>	U	2.0	1.9	0,5
1,1,2,2-Tetrachloroethane	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2,0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2,0</td><td>1.9</td><td>0.5</td></srl<>	U	2,0	1.9	0.5
o-Xylene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
4-Ethyltoluene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0,5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0,5</td></srl<>	U	2.0	1.9	0,5
1,3,5-Trimethylbenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1,2,4-Trimethylbenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1,3-Dichlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1.4-Dichlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1,2-Dichlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>1,9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1,9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
1,2,4-Trichlorobenzene	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2.0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
Hexachlorobutadiene	<srl< td=""><td>U</td><td>2,0</td><td>1.9</td><td><srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<></td></srl<>	U	2,0	1.9	<srl< td=""><td>U</td><td>2.0</td><td>1.9</td><td>0.5</td></srl<>	U	2.0	1.9	0.5
BFB-Surrogate Std. % Recovery		94%				70-130%			

U - Compound was analyzed for, but was not detected at or above the SRL.

Marcus Hueppe Laboratory Director

Page 5

744

ANALYSIS DATE : 05/02/2017 ANALYST : JJG INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : PS030917-05

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15 Continuing Calibration Verification of the 04/11/2017 Calibration

Compounds	Conc	Dally Conc	%REC*
4-BFB (surrogate standard)	10.00	9.81	98
Chlorodifluoromethane	10.40	10.28	99
Propene	10.90	10.98	101
Dichlorodifluoromethane	10.60	10.52	99
Chloromethane	10.30	10.47	102
Dichlorotetrafluoroethane	10.00	10.00	100
Vinyl Chloride	10.10	10.20	101
Methanol	19.00	18.44	97
1,3-Butadiene	10.50	11.11	106
Bromomethane	10.00	9.87	99
Chloroethane	9,70	9.95	103
Dichlorofluoromethane	10.60	10.94	103
Ethanol	9.10	9.24	102
Vinyl Bromide	10.10	10.83	107
Acetone	10.60	10.11	95
Trichlorofluoromethane	10,40	10.61	102
2-Propanol (IPA)	10.80	10.97	102
Acrylonitrile	11.50	12.07	105
1,1-Dichloroethene	10.80 -	11.52	107
Methylene Chloride (DCM)	10.50	9.46	90
Allyl Chloride	11.00	10.04	91
Carbon Disulfide	10.00	8.97	90
Trichlorotrifluoroethane	10.70	10.49	98
trans-1,2-Dichloroethene	10.10	10.75	106
1,1-Dichloroethane	10.50	10.51	100
Methyl Tert Butyl Ether (MTBE)	10.60	10.33	97
Vinyl Acetate	10.80	10.85	100
2-Butanone (MEK)	10.60	10.13	96
cis-1,2-Dichloroethene	10.60	11.12	105
Hexane	10.50	9.95	95
Chloroform	10.90	10.49	96
Ethyl Acetate	10.90	10.36	95
Tetrahydrofuran	10.50	10.22	97
1,2-Dichloroethane	10.60	10.25	97
1,1,1-Trichloroethane	10.60	10.42	98

www.aaclab.com • (805) 650-1642 • FAX (80) 650-1

Page 6

 \mathbf{X}_4

ANALYSIS DATE : 05/02/2017 ANALYST : JJG

INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : PS030917-05

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15 Continuing Calibration Verification of the 04/11/2017 Calibration

Compaands	Conc	Dally Conc	%REC*
Benzene	10.40	10.38	100
Carbon Tetrachloride	10.80	11.25	104
Cyclohexane	10.50	10.93	104
1,2-Dichloropropane	10.50	9.67	92
Bromodichloromethane	10.40	9.92	95
1,4-Dioxane	10.40	9.64	93
Trichloroethene (TCE)	10.40	10.25	99
2,2,4-Trimethylpentane	10.30	9.45	92
Heptane	10.40	10.06	97
cis-1,3-Dichloropropene	10.70	10.77	101
4-Methyl-2-pentanone (MiBK)	10.00	9.47	95
trans-1,3-Dichloropropene	10.00	10.43	104
1,1,2-Trichloroethane	10.40	11.04	106
Toluene	10.60	11.48	108
2-Hexanone (MBK)	10.80	10.24	95
Dibromochloromethane	9.90	9.78	99
1,2-Dibromoethane	10.40	11.17	107
Tetrachloroethene (PCE)	10.30	10.40	101
Chlorobenzene	10.50	10.21	97
Ethylbenzene	10.50	10.59	101
m & p-Xylenes	20.00	20.29	- 101
Bromoform	10.40	10.52	101
Styrene	10.30	10.67	104
1,1,2,2-Tetrachloroethane	10.40	10.06	97
o-Xylene	10.40	9.88	95
4-Ethyltoluene	10.00	10.17	102
1,3,5-Trimethylbenzene	10.00	9.86	99
1,2,4-Trimethylbenzene	9.90	9.46	96
Benzyl Chloride (a-Chlorotoluene)	9.60	10.03	104
1,3-Dichlorobenzene	9.60	10.26	107
1,4-Dichlorobenzene	9.80	10.02	102
1,2-Dichlorobenzene	9.70	9.52	98
1,2,4-Trichlorobenzene	8.80	8.73	99
Hexachlorobutadiene	9.30	8.55	92

* - %REC should be 70-130%

Ce Marcus Hueppe

Laboratory Director

 (\mathbf{k})

www.aaclab.com • (805) 650-1642 • FAX (805

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

CLIENT ID	: Laboratory Control Spike	DATE ANALYZED	: 05/02/2017
AAC ID	: LCS/LCSD	DATE REPORTED	: 05/02/2017
MEDIA	: Air	UNITS	: ppbv

TO-15 Laboratory Control Spike Recovery

Compound	Sample	Spike	Spike	Dup Spike	Spike	Spike Dup	RPD**
Compound	Conc.	Added	Res	Res	% Rec *	% Rec *	%
1,1-Dichloroethene	0.0	10.80	11.52	10.91	107	101	5.4
Methylene Chloride (DCM)	0.0	10.50	9.46	9.31	90	89	1.6
Benzene	0.0	10.40	10.38	8.94	100	86	14.9
Trichloroethene (TCE)	0.0	10.40	10.25	10.34	99	99	0.9
Toluene	0.0	10.60	11.48	10.59	108	100	8.1
Tetrachloroethene (PCE)	0.0	10.30	10.40	10.48	101	102	0.8
Chlorobenzene	0.0	10.50	10.21	10.64	97	101	4.1
Ethylbenzene	0.0	10.50	10.59	9.97	101	95	6.0
m & p-Xylenes	0.0	20.00	20.29	17.93	101	90	12.3
o-Xylene	0.0	10.40	9.88	10.12	95	97	2.4

* Must be 70-130%

** Must be < 25%

Marcus Hueppe

Page 8

Laboratory Director

www.aaclab.com • (805) 650-1642 • FAX (805)

Atmospheric Analysis & Consulting, Inc.

Method Blank Analysis Report

MATRIX	:	AIR	ANALYSIS DATE	:	05/02/2017
UNITS	:	ppbv	REPORT DATE	:	05/02/2017

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Method Blank	זמ		
AAC ID	MB 050217	RL		
Chlorodifluoromethane	<rl< td=""><td>0,5</td></rl<>	0,5		
Propene	<rl< td=""><td>1,0</td></rl<>	1,0		
Dichlorodifluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Chloromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Vinyl Chloride	<rl< td=""><td>0.5</td></rl<>	0.5		
Methanol	<rl< td=""><td>5.0</td></rl<>	5.0		
1,3-Butadiene	<rl< td=""><td>0.5</td></rl<>	0.5		
Bromomethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Chloroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Dichlorofluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Ethanol	<rl< td=""><td>2.0</td></rl<>	2.0		
Vinyl Bromide	<rl< td=""><td>0.5</td></rl<>	0.5		
Acetone	<rl< td=""><td>2,0</td></rl<>	2,0		
Trichlorofluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
2-Propanol (IPA)	<rl< td=""><td>2,0</td></rl<>	2,0		
Acrylonitrile	<rl< td=""><td>1.0</td></rl<>	1.0		
,1-Dichloroethene	<rl< td=""><td>0.5</td></rl<>	0.5		
Methylene Chloride (DCM)	<rl< td=""><td>1.0</td></rl<>	1.0		
Allyl Chloride	<rl< td=""><td>0.5</td></rl<>	0.5		
Carbon Disulfide	<rl< td=""><td>0.5</td></rl<>	0.5		
Trichlorotrifluoroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
rans-1,2-Dichloroethene	<rl< td=""><td>0.5</td></rl<>	0.5		
,1-Dichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Methyl Tert Butyl Ether (MTBE)	<rl< td=""><td>0.5</td></rl<>	0.5		
/inyl Acetate	<rl< td=""><td>1.0</td></rl<>	1.0		
-Butanone (MEK)	<rl< td=""><td>1.0</td></rl<>	1.0		
is-1,2-Dichloroethene	<rl< td=""><td>0.5</td></rl<>	0.5		
lexane	<rl< td=""><td>0.5</td></rl<>	0.5		
Chloroform	<rl< td=""><td>0.5</td></rl<>	0.5		
thyl Acetate	<rl< td=""><td>0.5</td></rl<>	0.5		
etrahydrofuran	<rl< td=""><td>0.5</td></rl<>	0.5		
,2-Dichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
,1,1-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
enzene	<rl< td=""><td>0,5</td></rl<>	0,5		
arbon Tetrachloride	<rl< td=""><td>0.5</td></rl<>	0.5		
yclohexane	<rl< td=""><td>0.5</td></rl<>	0.5		
,2-Dichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5		
romodichloromethane	<rl< td=""><td>0,5</td></rl<>	0,5		
,4-Dioxane	<rl< td=""><td>0.5</td></rl<>	0.5		
richloroethene (TCE)	<rl< td=""><td>0.5</td></rl<>	0.5		
,2,4-Trimethylpentane	<rl< td=""><td>0.5</td></rl<>	0.5		
eptane	<rl< td=""><td>0.5</td></rl<>	0.5		

(19)

1534 Eastman Ave., Ste. A • Ventura, • CA 93003

www.aaclab.com • (805) 650-1642 • FAX (805) 650-164

Method Blank Analysis Report

MATRIX	: AIR	ANALYSIS DATE	: 05/02/2017
UNITS	: ppbv	REPORT DATE	: 05/02/2017

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Method Blank	RL	
AAC ID	MB 050217		
cis-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5	
4-Methyl-2-pentanone (MiBK.)	<rl< td=""><td>0.5</td></rl<>	0.5	
trans-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5	
1,1,2-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5	
Toluene	<rl< td=""><td>0.5</td></rl<>	0.5	
2-Hexanone (MBK)	<rl< td=""><td>0.5</td></rl<>	0.5	
Dibromochloromethane	<rl< td=""><td>0.5</td></rl<>	0.5	
1,2-Dibromoethane	<rl< td=""><td>0.5</td></rl<>	0.5	
Tetrachloroethene (PCE)	<rl< td=""><td>0.5</td></rl<>	0.5	
Chlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
Ethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
n & p-Xylenes	<rl< td=""><td>1.0</td></rl<>	1.0	
Bromoform	<rl< td=""><td>0.5</td></rl<>	0.5	
Styrene	<ri,< td=""><td>0.5</td></ri,<>	0.5	
1,1,2,2-Tetrachloroethane	<rl< td=""><td>0.5</td></rl<>	0.5	
o-Xylene	<rl< td=""><td>0.5</td></rl<>	0.5	
I-Ethyltoluene	<rl< td=""><td>0.5</td></rl<>	0.5	
,3,5-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
,2,4-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
Benzyl Chloride (a-Chlorotoluene)	<rl td="" <=""><td>0.5</td></rl>	0.5	
,3-Dichlorobenzene	<ri.< td=""><td>0.5</td></ri.<>	0.5	
,4-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
,2-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
,2,4-Trichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
Iexachlorobutadiene	<rl< td=""><td>0.5</td></rl<>	0.5	
System Monitoring Co	mpounds	0.0	
BFB-Surrogate Std. % Recovery	99%	1211	

RL - Reporting Limit

Marcus Hueppe Laboratory Director

1534 Eastman Ave., Ste. A • Ventura, • CA 93003

www.aaclab.com • (805) 650-1642 • FAX (805) 650-1644

Page 10

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

AAC ID MATRIX	: 170560-98492 : Air	DATE ANALYZED DATE REPORTED UNITS	: 05/02/2017 : 05/02/2017 : ppby
			· PPD1

TO-15 Duplicate Analysis

Compound	Sample Conc	Duplicate	% RPD
Chlorodifluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Propene	, <srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dichlorodifluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chloromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dichlorotetrafluoroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Vinyl Chloride	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Methanol	315	322	2.2
1,3-Butadiene	<srl< td=""><td><sri< td=""><td>2,2</td></sri<></td></srl<>	<sri< td=""><td>2,2</td></sri<>	2,2
Bromomethane	<srl< td=""><td><sbi< td=""><td>0.0</td></sbi<></td></srl<>	<sbi< td=""><td>0.0</td></sbi<>	0.0
Chloroethane	<srl< td=""><td><srl <spi< td=""><td>0.0</td></spi<></srl </td></srl<>	<srl <spi< td=""><td>0.0</td></spi<></srl 	0.0
Dichlorofluoromethane	<sri.< td=""><td>SRL</td><td>0.0</td></sri.<>	SRL	0.0
Ethanol	580	621	0.0
Vinyl Bromide	<sri (<="" td=""><td></td><td>0.8</td></sri>		0.8
Acetone	51.7	527	0,0
Trichlorofluoromethane	<921	SDI	1.9
2-Propanol (IPA)		-SRL	0.0
Acrylonitrile	<\$81	SRL	0.0
1,1-Dichloroethene		SRL	0.0
Methylene Chloride (DCM)	<spi <="" td=""><td>SRL</td><td>0.0</td></spi>	SRL	0.0
Allyl Chloride	102	SRL	0.0
Carbon Disulfide	COL	<skl,< td=""><td>0.0</td></skl,<>	0.0
Trichlorotrifluoroethane	-SPI	<srl (odi<="" td=""><td>0.0</td></srl>	0.0
trans-1,2-Dichloroethene	-SRL	<srl (OD)</srl 	0.0
1.1-Dichloroethane	SPL	<srl< td=""><td>0.0</td></srl<>	0.0
Methyl Tert Butyl Ether (MTBE)	<srl <sdi< td=""><td><srl -<="" td=""><td>0.0</td></srl></td></sdi<></srl 	<srl -<="" td=""><td>0.0</td></srl>	0.0
Vinyl Acetate	SRL	<srl i<="" td=""><td>0.0</td></srl>	0.0
2-Butanone (MEK)	SPI	<srl *<="" td=""><td>0.0</td></srl>	0.0
cis-1,2-Dichloroethene	SRL	<srl< td=""><td>0.0</td></srl<>	0.0
lexane	SRL	<srl< td=""><td>0.0</td></srl<>	0.0
Chloroform	SRL	<srl< td=""><td>0.0</td></srl<>	0.0
Sthyl Acetate	SKL	<srl< td=""><td>0.0</td></srl<>	0.0
Fetrahydrofuran	SKL	<srl< td=""><td>0.0</td></srl<>	0.0
.2-Dichloroethane	SRL	<srl< td=""><td>0.0</td></srl<>	0.0
.1.1-Trichloroethane	<srl (srl<="" td=""><td><srl< td=""><td>0.0</td></srl<></td></srl>	<srl< td=""><td>0.0</td></srl<>	0.0
Benzene	<srl (d)<="" td=""><td><srl< td=""><td>0,0</td></srl<></td></srl>	<srl< td=""><td>0,0</td></srl<>	0,0
arbon Tetrachloride	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
a bon rotacinoride	SRL SRL	<srl< td=""><td>0.0</td></srl<>	0.0

 (\mathbf{x})

www.aaclab.com • (805) 650-1642 • FAX (805) 6-1643

Page 11

Atmospheric Analysis & Consulting, Inc.

Quality Control/Quality Assurance Report

AAC ID MATRIX	: 170560-98492 : Air	DATE ANALYZED DATE REPORTED UNITS	: 05/02/2017 : 05/02/2017 : ppbv
------------------	-------------------------	---	--

TO-15 Duplicate Analysis

Compound	Sample Conc	Duplicate Conc	% RPD
Cyclohexane	<srl< td=""><td>SRL SRL</td><td>0.0</td></srl<>	SRL SRL	0.0
1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Bromodichloromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,4-Dioxane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Trichloroethene (TCE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Heptane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><sri.< td=""><td>0.0</td></sri.<></td></srl<>	<sri.< td=""><td>0.0</td></sri.<>	0.0
rans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1,2-Trichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Foluene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dibromochloromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
,2-Dibromoethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Ethylbenzene	- <srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
n & p-Xylenes	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Bromoform	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
tyrene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
,1,2,2-Tetrachloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
-Xylene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
-Ethyltoluene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
,3,5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2,4-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
enzyl Chloride (a-Chlorotoluene)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
4-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2,4-Trichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
exachlorobutadiene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
System Monitoring Compounds		and the second second	010
FB-Surrogate Std. % Recovery	100%	101%	1.1

SRL - Sample Reporting Limit

Marcus Hueppe Laboratory Director

.

 (\mathfrak{B})

Page 12

								T II 12401 - 2011-24 1-24	A DESCRIPTION OF A DESC
۳L	Project ID:	170560	Sacramento Rendering Co.	SAMPLE CHA	IN OF C	VUSTODY	BE PROJECT MAI	NAGER:	
7	Analyical Lab:		AAC					Jim McCorm	lack
#	DATE	TIME Start/Stop	SAMPLE ID Run#/Source/Canister #	CONTAINER size / type	Vacuum Final	Storage Temp °F	SAMPLE DESCRIPTION	ANALYSIS	TAT
	04/26/17	1046/1116	Run 1, Scrubber #4, 000499 98489	6L/SUMMA	5 Hg	Ambient	Exhaust Gas	T0-15	NORMAL.
7	04/26/17	1124/1154	Run 2, Scrubber #4, 000514 98490	6L/SUMMA	5 Hg	Ambient	Exhaust Gas	TO-15	NORMAL
m	04/26/17	1202/1232	Run 3, Scrubber #4, 000445 98491	6L/SUMMA	6 Hg	Ambient	Exhaust Gas	TO-15	NORMAL
4	04/26/17	1339/1409	Run 1, Scrubber #2, 000390 \$\$492	6L/SUMMA	6 Hg	Ambient	Exhaust Gas	TO-15	NORMAL
-vo									
<u> </u>									
~									
10									
=									
12									
E									
14									
<u>1</u>									
16									
17									
8									
61									
20									
21									
SPEC	IAL INSTRUC	TIONS: Reco	ord & Report all liquid sample volumes.						
Suchan	it Doculta for At	Tim M.C.							
HIGHC	IT RESULTS TO: A	In The State	rmack		BES	T ENVIRON	WMENTAL 339 Stealth Court, Liverm	oreCA. 94551	
R	elinquished by:	VIE N°COAR	Acre 4/27/1 Received by:				Date: Time:		
Re	elinquished by:		Jul CH Received by	/			Date: Time:	ľ	
3-	where covering		Received by:		.}		Date: 3/1// Time: 126	0	
25		UN AS RECEIVE	D: UK <u>or</u> not OK	rt any sr	5		JPS		

APPENDIX C FIELD DATA SHEETS

ENVIRONMENTAL

Livermore, CA 925-455-9474

11	P	М	ethod 2 - S	tack Gas '	Volumetr	ic Flow Ra	te Detern	ination			
acility	51	20				Lacation:	Const	The off	1		
Date	Cit	17	Parconnal	RN	MI	Borona(nio (Cit 4	L		
Pitot Eact	$\frac{2}{2}$ or $(C): \lambda$	24	Pitot #	NR J	inc.	Steak Die (D	r har), rig:	291			
Thoract	on (s-p) = 0	40	1 1101 H.	~ ~ ~ ~		Stack Dia. (D	sJ1 2	07			
Accumod		12	Mag/Jackin	сн 🔎	L	Stack Area ft	^ (A,):				
Accumad	2002. 2/ CO ·		Actual % CC) -		Port Diamete	1/2				
Assumed	700.02.		Actual %CC	2		Port Depth "			3	Port Ht.	
Assumed	%CO:		Actual %CC):		Downstream	Distance from	1 disturbance	- <u> </u>		
Assumed	70H2U:	0.000	Actual %112	0:		Upstream Di	stance from d	isturbance:	B		
Pilot Leak	Check (15se	$ec(a) > 3^{-1}H_{1}$	20) :			Cyclonic Flor	w Check:				
				Run 1			Run			Run 3	
	,		Time: 12	27 Static	3	Time: 12	3) Static	3	Time:	Static	;
Port ID	Point Location		Stack Temp	ΔР	VДР	Stack	ΔP	V∆P	Stack	ΔP	$\sqrt{\Delta P}$
Point #	Inches		°F. (ts)	"H.O	"H.O	°E (te)	0.4"	"H O	I emp		
1	10		A A1	20		P, (IS)		1120	·r, (ts)	H ₂ O	"H ₂ O
6.9	1.7		9 8	138	1010		-57	50			
	6.3		49	32	.566	94	136	. 600			
3	11.6		97	128	524	96	.38	616			
4	19.4		96	:30	548	93	. 34	.583			
5	40.6		96	,40	637	26	130	.548			
6	48.4		95	,45	.671	99	.36	.600			
7	53.7		95	052	.721	tor	.38	.616			
8	58.1		95	148	.693	103	.44	.663			
1			97	132	.566	SK	.35	.592			
2			97	38	5.10	98	38	C 11			
3			97	75	.607	.99	132	16			
4,			96	.28	116	E A	70	1300			
15			41	. 27	510	47	30	_SM			
			6	<u>_(34</u>	, 300	100	10	.616	1		
6			- 71	1.30	54	100	.45	_671			
-4			47	.32	.566	100	.48	-69'1			
0			- 48	.30	.548	100	142	Lay			
			-					0			
									100		
								-			
								·			
					12						
			917	1		000	19				
AVERAGES	S		10.2	0.000	602	18.5	8.001	.Con			
			ACFM			ACFM			ACEM		
			DSCFM			DSCEM			DSCEM		
							1.2.0-100		DOCTIN		
				110							
Comments: ((i.e.: diag. or	process in	fo.)	5 AAM	92						
02 1		Telle	10k F	THE	4.5	W	25				
	~ 12	2:17	STALT 7	1302		P	-80				
or c	>		I-chi31	0 11							
	12	147	1	' dg							
		/									
											00
_	(the fail to be									C-2

C-3

deriver have

Method 2 - Stack Gas Volumetric Flow Rate Determination

Facility	<r< th=""><th>С</th><th>35</th><th></th><th></th><th>Location:</th><th>scrub</th><th>her</th><th># 2</th><th></th><th></th></r<>	С	35			Location:	scrub	her	# 2		
Date: 4	1-26-1	7	Personnel;	SAID	ne	Barometric (P _{bar}), "Hg:	29.9	6		
Pitot Facto	or (C_p) :	84	Pitot #	92		Stack Dia. (I	⊃ _s), ''∵	2411		-	
Thermoco	uple#: Q	2	Mag7Inclin	e#: Rax	#2	Stack Area f	ι ² (Λ.):	6/	38.48	5	_
Assumed ?	%O ₂ :	2	Actual %02	:		Port Diamete	er '':	743	.254	A.1 ?	2
Assumed %	∕₀CO₂:		Actual %C0	D ₂ :		Port Depth *		191		Port Ht.	
Assumed %	/vCO:		Actual %C0	D:		Downstream	Distance from) disturbance	0		
Assumed ?	%H₂O:		Actual %H2	0:		Upstream Di	stance from d	isturbance:	20		
Pitot Leak	Check (15se	c @>3"H	20):	-		Cyclonic Flo	w Check:	1	00.3		
				. Run 1			Run 1		[Run 3	
			Time:	Vo Statio	:.0.12	Time: 3	Static	0.17	Time:	Static	
Port ID	Point	1	Stack	ΔΡ	 √∆P	Stack	AP	VAP	Stack	AP	alan
&	Location		Temp			Temp	E		Temp	- 21	۷ <u>۲۲</u> ۲-
Point #	Inches		°F, (ts)	"H ₂ O	"H ₂ O	°F, (ts)	"H ₂ O	^{"H20}	°F, (ts)	"H2O	"H.O
			67	6.12	4.424	71	LUUY7	. 2 0			1120
			173	4.20	0.16	1-1-		6.212			
			122	0.2	0.414		0.441	0.20			
3			68	0.22	0.767		0.5.00	6.25			
4			68	0.14	0.490	71	0.500	6:25			11
5			68	0.20	0.447	11	0,469	0.22			
6			68	0.20	0447	151	0.441	0.20			· · · ·
7			70	0.12	1424	151	LUCU:	1.12		1. 1.	· · · · · · · · · · · · · · · · · · ·
2			120	412	allard	131	0101	0.11		10 mil 2	- d
<u> </u>			1-10	0.18	01727	<u> </u>	210-	0.10			541
1.10											Si
										1	
2											191 - 9
3								7			
Y								1			
1											
->											
_7											
8											
								0			
								.IAD			
								WAI			
			10 0		1115	_ 1					
			67.5	6) 14 (71.0	$-\epsilon$	101/0	\rightarrow		
AVERAGES	3		00.7					0.151	1		
			ACFM			ACFM			ACFM		
			DSCFM			DSCFM			DSCFM		14.19
						>					
							1				
Comments: (i.e.: diag. or	process in	1 1fo.)								
			1	IAin	VL	4					
				VVE	0 1	1					
		. î		DE	4 7	0					
				PI	()	-					
÷											
					16						

	101		ack Gas	vorumetri		CASE	G Ploy	1			
Facility:	SKC				Location: Scrubber + S						
Date: 5	3-14-28-	17 Personnel:	SAJ	Mc	Barometric (1	P _{bar}), "Hg:	29.7	0			
litot Facto	or (Cp): pr	Pitot #:	92	-	Stack Dia. (D),": 70					
hermocou	aple#: 97	Mag / Ineline	#: 1	シン	Stack Area ft	² (A,):					
ssumed %	40 ₂ :	Actual %O2:			Port Diamete	r": []	6."				
ssumed %	ωCO ₂ :	Actual %CO	2		Port Depth "	:			Port Ht.		
ssumed %	4CO:	Actual %CO			Downstream	Distance from	disturbance	1.5			
ssumed %	6H2O:	Actual %H2C):		Upstream Dis	stance from di	sturbance:				
itot Leak	Check (15sec @>	3"H,0):			Cyclonic Floy	v Check:					
			Run 1			Run			Run 3		
		Time: / A.	Statio	······································	Time: ()	Static:	~ 5	Time	Static		
Dawf ID	Point	Stock	AP		Stock		lip	Staal	AD	lin	
Port ID &	Location	Temp	Δr	γΔr	Temp	Δr	$A \nabla 1_{r}$	Бласк	ΔP	νΔP	
Point #	Inches	°E (ts)	0.8"	"H.O	°E ((s)		0.H"	°E ((c)	0.47"		
1	menes	T , (13)	1120	1120	1', (ts)	1120	1120	1', ((3)	1120	H ₂ O	
1		10	. 10	(0)/	93	.68	845				
2		95	(14	860	19	.12	.871				
3		92	-85	.922	94	50	,707				
4		94	. 70	.949	91	89	.043				
E		93	, 87	920	91	1.0	t.oot				
1		47	,94	anx	12	101	607				
~		GM	Im	1 1 1 1 1	11	.en	ALV				
-			1,0	1.017	91	17	. 459				
8		73	.80	1.894	7.0	182	. 40G				
			52	721	90	172	, 849				
2		83	,68	. 025	91	. 90	.824				
3		89	.70	\$37	92	.92	.arg				
4		50	Fr	\$2.5	92	.55	0.75				
1		0 >	<u> </u>	1 1 1 1 1	92	. 60	677				
-7-		10	1.0	000	- 12 C:==	00	171				
6		40	- 12	104	- 77	.75	.975	iii		-	
7		- 92	190	M97	- 43	10	1000				
8		90	.84	917	94	- 80	.894				
										-	
					41.0	and					
VERACES	I	912		1.296	91.4	THE	a17.				
VERAGE	City.			A.D/	1 OPP 1		All		I		
		ACFM		1000	ACFM			ACFM	-		
		DSCFM			DSCFM			DSCFM			
					385						
mments: ((i.e.: diag. or proc	ess info.)	- A.	- 105	C	the					
200	2 112.71	MADT	000	9200	Can	-					
0	10:31	5 (AMC 1			1-1						
U COL				U	16						
É	X14730"	Da.			700	T					
/	-	79.		1	1 20						
(Frilo	ELL									
1	E. 1901 1 -	MS				4.8		1		C.	

z:\forms\field\m2x3.xls - 8/2/10

T ENVIRONMENTAL

z:\forms\field\m2x3 xls - 8/2/10

Livermore, CA 925-455-9474

Printer P

Method 2 - Stack Gas Volumetric Flow Rate Determination

1 1	/	N				(<u> </u>	40	11		1	
acility.	5	RC	(Location:	SC	- Webe	、年、	I	
ate:	4.26	-17	Personnel;	SAN	MC	Barometric (P _{bar}), "∐g:	29.9	0		
itot Facto	or (Ĉ _p): 🖉	.84	Pitot #:	92		Stack Dia. (E	s), ": 2	2/11	2		
Thermoco	uple#: 9	2	Man / Inclin	e #: "2	Box	Stack Area f	² (A ₄):	35.7	82		
Assumed 9	%O2:		Actual %O2:			Port Diamete	ar "i	1.31	2"		
Assumed 9	%CO2:		Actual %CC) ₂ :		Port Depth "	: 4.5			Port Ht.	
Assumed 9	%СО:		Actual %CC):		Downstream	Distance from	n disturbance:	2		
Assumed ?	%H ₂ O:		Actual %H2	0:		Upstream Di	stance from d	isturbance:	>0	5	
Pitot Leak	Check (15se	c @ >3"H ₂ ()): <u> </u>			Cyclonic Flo	w Check:	V		- Di-	
	6.8			Run 1		Z	Run			Run	
			Time: 0	5 oStatic	-0.3	Time:	05 Static	- 0.3	Time:	2 5 Static	-0.3
Port ID	Point		Stack	ΔP	√∆P	Stack	ΔP	√∆P	Stack	ΔP	VΔP
&	Location		Temp			Temp			Temp		
Point #	Inches		°F, (ts)	"H ₂ O	"H ₂ O	^o F, (ts)	"H ₂ O	"H ₂ O	^o F, (ts)	"H ₂ O	"H ₂ O
			59	0.18	6.724	62	1.20	0.441	61	6.20	0.447
2			89	6.12	0.424	62	6.20	0.447	62	A-22	0.469
フ			59	6.20	1447	62	0.20	0.497	12	6.28	0.529
4	<		29	0.30	0.548	62	0.25	0.500	15	0.30	A.CYA
5		1	129	430	0.548	62	1.20	0542	25	1.74	- V90
1			20	0.80	92	12	6.20	1	77	001	0.110
6			21	0.23	0715	64	122	0.260	65	0 22	0.101
			5Y	0.30	0.570	62	0'50	0.248	63	0.20	6.441
2			59	0.25	0.200	62	05.9	0.490	63	0-20	6.447
										46 11	
			60	6.22	0.469	62	0.24	0.490	62	6.70	0.447
2			70	4.22	nº 929	12	6:25	002:1	62	A:211	1990
7			1910	6.2 M	A-582	92	6.25	1.500	65	1 214	A.V.90
2			60	0.24	L CUD	197	6 22	4.520	65	1.23	600
-I-		-	60	8.30	6120	6 -	0.28	0'247	02.	0.5X	0.527
		13499	66	6.20	6.578	62	0.30	5.270	67	0.30	0.548
6	300.44		<u>[G</u>	0.24	0.470	62	0.30	0.548	67	050	0.548
7			.20	1.18	0.424	62	0.20	0.447	62	8.24	0.49.0
8			20	R.18	0424	62	0.20	0.447	62	0.24	A. 490.
					2 lat			6-11	Mart		D 11-
											A CONTRACTOR
										- 19	Cal
100											St
C. Marine					1	Sec. and	-			. 9	
100						19					
N.C.	1.00			1.1						i.	
			- 0	14.24	2 1	(120	7		1		
AVEDACE			51.5	0.800	0.501	3600	1	0.801	62.5		0.499
AVERAGE	.0			9701	C .	1000				12	<u> </u>
			ACI'M			ACIM			ACIEN		
			DSCFM			DSCFM			DSCFM		
										1 C	
Comments:	(i.e.: diag. or	· process in	fo.)				1	NIEt	55		100
	We	1 18	°6				9	1001	1		
		-34	0					Nrv	Ch		
	Nul	, 5	4				7	PIT			
	PMY				3				0		
		12 1						R	L		
		1-1						(
		1									C.5
											No. N.

Method 2 - Stack Gas Volumetric Flow Rate Determination

acility:	CRO	-				Location:	scrub	hor #	4		
)ate:	4-26-	TZ	Personnel:	<a15< td=""><td>he</td><td>Barometric (I</td><td>≥_{har}), "∐g:</td><td>7</td><td>1.00</td><td></td><td></td></a15<>	he	Barometric (I	≥ _{har}), "∐g:	7	1.00		
Pitot Facto	or (C _p): O'	RY	Pitot #: 9	2	1	Stack Dia. (D	s), ''t	8111	17		
Thermoco.	uple #:	0	Mag/Incline	c#: 2	Rex	Stack Area ft	² (A,):	3	5.78	5	
Assumed ?	%0 ₂ :		Actual %02:			Port Diamete	r "s	3/8"			
Assumed ?	%CO2:		Actual %CO	J ₂ :		Port Depth "	· Y.	50		Port Ht.	
Assumed ?	%CO:		Actual %CO	J g		Downstream	Distance from	1 disturbance:	2		
Assumed ?	%H₂O:		Actual %H2();		Upstream Dis	stance from di	sturbance:	20.7	>	
Pitot Leak	c Check (15sec	@>3"H ₂ 0): /			Cyclonic Flov	v Check:	\leq		~ ~	
			17	Runk			Run 3		m: . 1.41*	Run 3	
	1		Time: 11	yo Static	1 1015	Time: JZ	03 Static	- 0.3	Time: JZ.	18 Static	10.7
Port ID	Point		Stack	ΔP	V∆P	Stack	ΔP	۷∆۲	Stack Term	ΔP	V∆P
& Delat #	Location		I cmp	"H-O	"H.O	°E (ts)	0.H"	"H ₂ O	°F. (ts)	"H ₂ O	0.4"
Point #	Inches		1	1120		17	- 20		67	. 72	- U/9
-			01	0.50	0.11-	03	0.20	°. Viq	-75	6.6-	0.101
			61	6.70	1-11.0	65	0'14	0.101	49	0.24	0.77~
3			64	6.70	6111	53	6.79	0.210	66	6.24	DYTY
Y			62	0.26	0.300	62	0.10	0.540	-69-	6.68	0521
5			62	6.26	0.510	6.4	0.32	0.266	66	05.9	0.212
6	0		62	0.23	0.529	67	0.30	0.218	66	6.30	0.548
7			62	6.30	6.578	61	0.24	6490	66	5.70	0.447
2			62	4.24	0.420	64	6.24	0.490	66	8:20	0.447
				1		- /					
			62	A.22	0.469	24	0.22	0.469	6.6.	0.20	0447
2			62	6.22	0.469	64	6.22	0.469	6.6	1.18	0.424
2			12	6.24	0490	24	6:22	0.529	2.6	6.25	AISOD
y			65	6.28	PCZM	14	6.22	1.529	76	A.28	
			62	6.26	A. 510	14	6.30	1.548	26	1.78	0.529
-7			62		LICYR	73	0.35	1.592	16	27	SAC
			25	A SV	100	97	6.26	10/0	20	6.24	LU9D
			74	0.21	O'Ula	27		1.1017	198	10.07	01/9
			01	D'LL	0.101	07	0.20	0771	- \$ \$	D.a	6.701
	- 17										
			110		Lught.	170	1	∇ ,			110-
AVERAGI	ES		61.0		0.999	65.0	<	12.5/0	> 60 "	9	b.112
ATEIOR			ACEM			ACEM		<u> </u>	ACFM		
			DECEM		1	DECEM			DSCEM		
			DOCEM			Docra			Doct in		
Comments	· (i.e.: diag. or	process in	16.)				0.0				
Commenter	. (L					1/ 6				

P3 wet \$8 Dry 65

C

z:\forms\field\m2x3 xls - 8/2/10

- 🔨	
Ē	
2	
- 23	
2	
7	ч
2	H
Ξ Ά	
-	1
	1
Z	1
È.	1
	1
- E-	I
Ś	I
E	1
0	1
	1

Livermore, CA 925-455-9474

£

SUMMA Canister Data Sheet

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	olect	THE	CHULHID	KANDA	g ING	<i>b.</i>	•	Tested by:	This NCCONNECC	Date: 5-3-17	
Time Time Startion start start start start start SizeVol. controler star stop initial Final D logi initial $Ambodi 05 6 L · C 202011 10 21 1/10 7 \cdot 3co 1/0 2co \cdot 1 \cdot 5 7 - 1 \cdot 5 03 'i 'i' 'i' 2/21 7 \cdot 7 7 \cdot 2 - 1 \cdot 5 7 - 1 \cdot 5 04 D Poh D Poh D D 1 - 1 \cdot 5 1 D Poh D Poh D 1 - 1 \cdot 5 1 D Poh D Poh D 1 - 1 \cdot 5 1 D Poh D Poh D Poh 1 - 1 \cdot 5 1 D Poh D Poh Poh 1 - 1 \cdot 5 1 D Poh Poh Poh Poh Poh Poh 1 - 1 \cdot 5 <$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Canister		Ţ	ime	Vac	aum 14		Samula		
555 G. LT OD.241 10 1 10 1 10 1 10 333 '' '' '' '' '' '' '' '' '' 333 '' '' '' '' '' '' '' '' 343 '' '' '' '' '' '' '' 1 '' '' '' '' '' '' 1 '' '' '' '' '' 1 '' '' '' '' '' 1 '' '' '' '' '' 1 '' '' '' '' '' 1 '' '' '' '' '' 1 '' '' '' '' ''' 1 '' '' '' ''' '''' 1 '' ''' '''' '''' 1 '' '''' ''''' ''''' 1 ''' ''''' '''''' '''''' 1 '''''' '''''''''' ''''''''''''''''''''''''''''''''''''	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Size/Vol.	Controller	Start	Stop	Initial	Final	E	1		
33 "I I' IZI 720 ID R0H Scanstan V 10-15 10 R	333 '' izi> izi> izi> izi> 10 10 201 2 10 201 10 10 201 2 10 10 10 10 10 201 10 10 11 10 2 10 2 10 11 11 2 10 2 10 11 10 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11 10 10 10 10 11 11	202	61	142000	1031	101	730	\$	Ru -	CH -2007	Analyte(s)	(7)
1 10 S0H 20-12 1 10 S0H 2032344 19-12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>1711 120 10 Korl 200324 L 120 Korl 20034 Korl</td><td>262</td><td>11</td><td>1.9</td><td></td><td>[]]</td><td></td><td>2</td><td></td><td>SCICUSORY S</td><td>51-01</td><td></td></td<>	1711 120 10 Korl 200324 L 120 Korl 20034 Korl	262	11	1.9		[]]		2		SCICUSORY S	51-01	
					171	1271	750	10	RUN]	SCRURBAN DI	10-15	
				a.						P		
								•				
									2			
												2
										*		
												ан 2
											-	
			-									- (Ê.) Q
												ļ
					E							
												л¢
								6				
				5								

1. Yorms Geldisummarks - 3/19/05

BEST ENVIRONMENTAL

Livermore, CA 925-455-9474

į.

SUMMA Canister Data Sheet

	Project ID:	SACE	PL MA MA	UL HEY	J + 6			Tested by: <u>//</u>	In Melonumerc	Date: 4-26-17
									· · ·	
		Canister		Ħ	ime	Vac	suum Ha		Sample	
L	A	Size/Vol.	Controller	Start	Stop	Initial	Final	A	Location	Anaketel
	664 000	6 17	000241	1046	1116	730	5	RUM	Sr 2122= #4	(spaining)
0	000514		:	1124	1)54	>30	S	2222	11	11
m	SHHOOO	2	1,	2021	1232	730	•	RUN 3	11	11
4	000390	-	11	1339	1409	730	Ŷ	1 4021	SCRUZZED #	11
in										
9										
						1			-	
~										
							<u>(3</u>)			
0										
										•
2									2	
Ξ										
12										
13										
14										
C										
ဂ္ဂဗ္ဂ	nments:									

 \mathbb{R}_q^{r}

8

f. VormsVietolsummn.xis - 3/15/69

APPENDIX D EQUIPMENT CALIBRATION RECORDS

Best Environmental

Type-S Pitot Tube Geometric Calibration Data Sheet

Probe # :	Calib. Date : 1-12-17
Pitot # : PT 92	Calib. Due : 7-12-17
Length : 92"	Technician : BoBGAllagh
Level Pitot Assembly D 371 (in.)	TUBE AXTS
P_{A} .459 (in.) P_{B} .459 (in.) $P = (P_{A} + P_{B})/2$	P SIDE PI ANE
$P/D_{t} = /.23$ (in.) (1.05 $\leq P/D_{t} \leq 1$.50)
$A = P_{A} + P_{B} = \frac{9/8 \text{ (in.)}}{Y = 2}$ $Y = \frac{2}{32} \text{ (in.)} (< 0.125 \text{ in.)}$ $\Theta = \frac{1}{9}$ $W = A \sin \Theta = \frac{016}{10} \text{ (in.)} (< 0.031 \text{ in.)}$	
B1= <u>3</u> •(<5°) B2= <u>3</u> •(<5°)	
$a1 = 2 \circ (<10^{\circ})$ $a2 = 3 \circ (<10^{\circ})$	
Pitot Condition. Good , Fair_, Poc	r, Repaired
Cal. Frequency = 6 months.	
Pitot tube meets or exceeds all specifications, or factor of 0.84. As per CFR PT. 60, App.A, EPA a1 and a2 (\leq 10°), b1 and b2 (\leq 5°). Z \leq .125in and	iteria and/or applicable design features and is hereby assigned a pitot tube certification Method 2. $4 \text{ w} \leq 0.031$.

PT92

		Type k	C Thermoo	couple Calibra	tion	10# PT92			
Р	itot #:PT	92		Meter #					
Pro	obe #:			Heater Box #					
Probe	Туре:			Length: 92"					
Calibration	Date: 1-12-	17		Other:	STACK TEMP	Tle			
Source Point #	Thermocouple ID	Test T/C Temp. (°F)	Reference Temp. (°F)	Temp. Difference < 400 °F	% Difference > 400 "F	Notes Pass / Fail			
	STACK Temp								
		35.1	35.3	2		Pass			
		54.6	54.6	Ð		Pass			
		355.0	353.4	+1.6		Ross			
						an a			
ן ז	VIST Pyrometer:	Tzz3406		Calibrated By:	BBC	hun			
NIST	`Thermocouple:	ASTM Me	Calil ercury in Glass	oration Frequency: Thermometer #:	6 Months 3364	ф <i>м</i>			
	Comments:								
					the second se				

Method Reference: Code of Federal Regulations, 40 CFR 60, Appendix A, Method 2, Revised as of July 1, 1992. Tolerance Limits: +/-4.0 °F For Temp <400°F. Tolerance Limits: +/-1.5% For Temp >400°F. 2

Electronic Thermometer Calibration Sheet

Manufacturer: Model #: Reference Inst. I.D. Operator:	HyELEC MS 6501 HIIG-E013L Jim McCorman	11	Instrument Calibration Cal. Due D: Loca	I.D.: Date: ate: ation:	4-12-17 10-12-17 Jin McCoemerk
Reference Lemp., F	Instrument Temp., °F	∆ Temperature, °F	% Diff.	Temp. Diff.	Comments
100	100	-0-		Ð	HASS
200	202	-+ 2-		-+ 2_	
300	300	÷		0	
400	400	-0		Ð	
500	501		.2		
600	603		,5		
700	701		.14		
800	804		5		
900	902		,22		
1000	1003		.3		
1100	1102		,18		
1200	1202		.16		
1300	1303	11	,23		
1400	1404		,28		
1500	504		.26		
1600	1605		,3(
1700	1704		123		
1800	1805		,27		
1900	1904		,21		
2000	2006		,30		
2100	N/A		N/A	_	

STD - NIST Pyrometer # :

Calibration frequency = 6 months

COMMENTS:

 \pm 4°F for temperatures <400 °F

 \pm 1.5% for temperatures >400 °F

Method Reference: 40CFR60

BEST ENVIRONMENTAL. Livermore CA. 925 455 9474

Differential Pressure Gauge Calibration

ID# WSZVDR

Calibrated By:	BBBBILACA	
Date Calibrated:	12.5-16	
Calibration Due:	6-5-17	

Gauge Type: <u>MAGNEHELSE</u> Scale: <u>O-.25'</u> Gauge Location: <u>MAG Box 2</u>

Gauge ID	Pressure Gauge Delta P	Gauge-Oil Manometer Delta P	Difference Delta P	Difference %	Notes
+	.075	,075	-U-	0	PASS
+	.15	.15	0	-0	PASS
+	, 2.15	,21	,065	2%	PRSS
	.105	,105	Ð	0	PASS
-	,16	.16	Ð	Ð	PASS
	,205	1205	Ø	Ð	PASS

Initial Calibration:

STD Used 0-1"manameter

Posttest Calibration: _____

Comments:

BEST ENVIRONMENTAL. Livermore CA. 925 455 9474

Differential Pressure Gauge Calibration

ID# R0809165741

Calibrated By	BoBGollag
5	0

Gauge Type:	Maquehelic	_
Scale:	0-1"	

Calibration Due: 6-5-17

Date Calibrated: 12-5-16

Gauge Location: MAG Box # 2

Gauge ID	Pressure Gauge Delta P	Gauge-Oil Manometer Delta P	Difference Delta P	Difference %	Notes
+	,27	.27	Ð	Ð	PASS
+	.50	,50	Ð	0	Pass
+	, 83	.84	.0(1%	PASS
	1.37	.37	Ð	-0-	Pass
-	,51	,52	,01	1%	Pass
	,88	. 90	,02	2%	Pass

Initial Calibration:

STD Used 0-1" Maranter

Posttest Calibration:

Comments:

Differential Pressure Gauge Calibration

ID# RosogizCAIK

Calibrated By	BeBGAllaf
Date Calibrated:	12-5-16
Calibration Due:	6-5-17

Gauge Type:	Manchelic	
Scale:	0-3"	
Gauge Location:	Mag Box #2	

Gauge ID	Pressure Gauge Delta P	Gauge-Oil Manometer Delta P	Difference Delta P	Difference %	Notes
+	.4	.35	,05	1.66%	PASS
+	1.2	1.11	,09	3 %	PASS
+	2.45	2.35	.1	3.33%	Pass
	.6	,55	,05	1.66 %	Abss
	1.45	1.38	,07	2.33	PASS
	2.85	2.75	,1	3.33%	Pass

Initial Calibration:

STD Used O-10" MARAT

Posttest Calibration:

Comments:

Differential Pressure Gauge Calibration

Calibrated By: BBBBAllage Date Calibrated: 12-5-16

Calibration Due: 6-5-17

Gauge Type: MAgneholic

ID# WZ4VMG

Scale: <u>*D-10^{""}*</u> Gauge Location: <u>MAG Box #2</u>

Gauge ID	Pressure Gauge Delta P	Gauge-Oil Manometer Delta P	Difference Delta P	Difference %	Notes
+	1.7	1.72	.02	.2	PASS
+	4.8	5.0	.2	2%	PASS
+	9.4	9.6	12	2%	Pass
	3,3	3.3	Ð	Ð	Pass
-	6.0	6.2	. 2	2%	Pass
	9.2	9.4	. 2	2%	Pass

Initial Calibration:

STD Used 0-10" MANDA

Posttest Calibration:

Comments:

users/owner/documents/2015 new cals and cyls/bobs cals and cylinders/bobs/cal. field. lab forms/forms cals/magnehelic cal. form 2015.doc

APPENDIX E STACK DIAGRAMS

E.

SACRAMENTO RENDERING CO. Sacramento, CA

Scrubber #1/APC Scrubber [Permit #21356] Test Date: May 3, 2017

SACRAMENTO RENDERING CO. Sacramento, CA

Scrubber #2/APC Counter Flow Tower Scrubber [Permit #21357] Test Date: April 26, 2017

SACRAMENTO RENDERING CO. Sacramento, CA

Scrubber #3/Cross-flow Scrubber [Permit #17221] Test Date: May 3, 2017

E-4

SACRAMENTO RENDERING CO. Sacramento, CA

Scrubber #4/Spray Tower Scrubber [Permit #18423] Test Date: April 26, 2017

APPENDIX F SAMPLING SYSTEM DIAGRAMS

EPA Method 1

Figure 1-3. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

Figure 1-4. Example showing rectangular stack cross section divided into 12 equal areas, with traverse points at centroid of each area.

EPA Method 1

LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

(Percent of stack diameter from inside wall

to traverse point)

Traverse Point		Number of traverse points on a diameter										
Number on a Diameter	2	4	б	θ	10	12	14	16	18	20	22	24
1	14.6	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3 5 5 5 5		75.0	29.6	19.4	14.6	11.8	9,9	8.5	7.5	6.7	6.0	5.5
4 2 4 3 3		93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5			85.4	67.7	34.2	25.0	20,1	16.9	14.6	12.9	11.6	10.5
6			95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
1 10 10 10 10				89.5	77.4	64.4	36,6	28.3	23.6	20.4	18.0	16.1
8 40 4004654				96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9 5 57675					91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.0
10					97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.2
.11						93.3	85.4	78.0	70.4	61.2	39.3	32.3
12						97.9	90.1	83.1	76.4	69.4	60.7	39.8
13 10000							94.3	87.5	81.2	75.0	68.5	60.2
14							98.2	91.5	85.4	79.6	73.8	67.7
15								95.1	89.1	8375	78.2	72.8
16								98.4	92.5	87.1	82.0	77.0
17									95.6	90.3	85.4	80.6
18									98.6	93.3	88.4	83.9
19 10.00										96.1	91.3	86.8
20										98.7	94.0	89.5
21											96,5	92.1
22											98.9	94.5
23 455034												96.8
24 1944												99.9

EPA Method 2

Type S Pitot Tube Manometer Assembly

EPA METHOD TO-15

Summa Canister Sampling Train

APPENDIX G SOURCE TEST PLAN

BEST ENVIRONMENTAL

339 Stealth Court Livermore, California 94551 (925) 455-9474 FAX (925) 455-9479 email: <u>bestair@sbcglobal.net</u>

April 18, 2017

Ms. Angela Thompson Sacramento Metropolitan AQMD 777 12th Street, 3rd Floor Sacramento, CA 95814

Re: Source Test Plan for compliance emissions testing of for wet scrubbers located at Sacramento Rendering Co. (SRC), 11360 Kiefer Blvd., Sacramento, California.

Permit No.	Description	# of Samples
21356	Scrubber #1/APC Scrubber	1
21357	Scrubber #2/APC Counter Flow Tower Scrubber	1
17221	Scrubber #3/Cross-flow Scrubber	1
18423	Scrubber #4/Spray Tower Scrubber	3

Dear Angela,

BEST ENVIRONMENTAL (BE) proposes the following methodology for the above referenced sampling project. The methods we propose for performing the test work follow:

- Thirty-minute samples will be collected on each scrubber for TO-15 VOC analysis using EPA Method TO-15. The Scrubber(s) will be operated at maximum achievable load during the testing. Analysis will be performed by Atmospheric Analysis and Consulting.
- Moisture, volumetric flow rate and molecular weight will be determined using CARB Methods 1, 2, 3 and 4. Ambient conditions will be assumed for molecular weight. Temperature saturation calculations will be used for moisture determinations.
- Load will be determined during the test series using fuel consumption, steam flow or a gas valve indicator.
- The complete technical report will be submitted to SRC within four six weeks of the test program completion. The report will include a test program description and tables presenting concentrations, emission factors and emission rates for all relevant compliance parameters. All supporting documentation will be included in the appendix (field data sheets, strip charts, calibrations, calculations, etc.).

The test program has been scheduled for April 26, 2017 with testing to begin at \sim 9:30 A.M. Scott Navlyt from SRC is coordinating the testing and he can be reached at (916) 753-6880. If you have any questions, please contact me at (925) 455-9474 X 103.

Best regards,

Bobby Asfour Project Manager

cc: Scott Navlyt, SRC

From: Angela Thompson
Sent: Thursday, April 27, 2017 12:41 PM
To: bestair@sbcglobal.net; Don Dumaine; Genesis Rivas
Cc: Scott Navlyt
Subject: RE: STP-Sacramento Rendering PTO 21356 & 17221 Test Date: 5/3/17

No I do not think that is necessary.

Thanks,

Angela Thompson Program Coordinator Field Operations Section | SMAQMD 777 12th Street 3rd Floor Saciamento: CA 95914 (916) 874 4305 Office [916) 825 8247 cell [916] 874 4899 Fax athompson@airquality.org www.airquality.org

From: bestair@sbcglobal.net [mailto:bestair@sbcglobal.net]
Sent: Thursday, April 27, 2017 11:44 AM
To: Angela Thompson
Cc: Scott Navlyt
Subject: STP-Sacramento Rendering PTO 21356 & 17221 Test Date: 5/3/17

Hi Angela,

Best is scheduled to finish up testing Scrubber #1 and #3 on May 3, 2017. Do you need me submit to you another test plan?

If you have any questions please feel free to call.

With Regards,

Jessica Ortiz Best Environmental 925/455-9474 x 100 http://www.bestenvironmentalonline.com/

April 19, 2017

Scott Navlyt SRC Companies 11350 Kiefer Blvd. Sacramento, CA 95830

Subject: SOURCE TEST PLAN, PERMIT NO(S).: 17221, 18423, 21356, 21357 - APPROVAL

Dear Mr. Navlyt:

The Sacramento Metropolitan Air Quality Management District (SMAQMD) is in receipt of the source test plan prepared by BEST ENVIRONMENTAL dated April 18, 2017. The testing plan hereby is approved, subject to the following conditions:

- 1. The emissions testing must be conducted in accordance with the following test method specified in the source test plan: EPA Method TO-15.
- 2. During the course of emission testing, the scrubbers shall be operated as close as possible to the maximum rated capacity. Information to substantiate this must be recorded during the test and submitted with your test results. This includes the facility feedstock input and the cooker operating rates.
- 3. The testing is scheduled for April 26, 2017 at 9:30 AM. As per normal practice, representatives from the SMAQMD may be present to observe system operating conditions and test procedures. If there is any change to the specific **start time** of the test, one-week advance notice to SMAQMD staff is required.
- 4. As per SMAQMD Rule 301, section 311 a source test evaluation fee of \$1,740.00 will be charged against the owner or operator of a source whenever the Air Pollution Control Officer finds that a source test is required. When multiple source tests are performed and the result submitted in one consolidated report, the source test fee of \$1,740.00 shall apply to the first 10 hours of District work. Each additional hour or portion thereof required for reviewing the source test shall be charged the time and materials labor rate established in Section 308.12. Please attach the enclosed *Source Test Invoice* to your check, made out to the SMAQMD.
- 5. A scheduled source test may not be discontinued due solely to the failure of one or more runs to meet applicable standards.

- 6. The source test report shall include a summary sheet including but not limited to the following information:
 - a. Measured emissions corrected to the appropriate standards.
 - b. A statement indicating that all error analyses (drift, bias, etc.) required by the test method(s) were performed per the method, and that the tests were conducted within the allowed limits.

Please be advised the SMAQMD may reject any source test that is not conducted in accordance with the current test methods specified in condition 1, does not follow the conditions specified in your source test plan, or is not conducted in accordance with SMAQMD rules or permit conditions.

If you have any questions concerning this matter, please contact me at (916) 874-2693.

Sincerely,

annound

Don Dumaine Air Quality Specialist

cc: BEST Environmental, 339 Stealth Court, Livermore, CA 94551

Include this invoice with your check

For SMAQMD Use Only

SOURCE TEST INVOICE

Invoice # DGD-17221

Due date: submitted with final report

Permit # 17221, 18423, 21356, 21357

Amount Due: \$1,740.00

APPENDIX H AUTHORITY TO CONSTRUCT OR PERMIT TO OPERATE SACRAMENTO METROPOLITAN

December 12, 2016

Michael Koewler Sacramento Rendering Companies 11350 Kiefer Boulevard Sacramento, CA 95830

ATTN: JESSICA.

Subject: SOURCE TEST PLAN PROPOSAL

Dear Mr. Koewier:

The Sacramento Metropolitan Air Quality Management District (SMAQMD) and the Sacramento Rendering Company (SRC) have met and discussed the request for SRC to perform emission testing of toxics from the rendering process. There is currently no regulatory requirement for SRC to conduct a test and any test is considered voluntary. SRC has requested guidance from SMAQMD as to what test to perform and the specific testing requirements. As a result of this request SMAQMD submits the following suggested test method and guidelines:

- 1. A minimum of one effluent exhaust sample should be obtained from each of the following locations:
 - a. Scrubber 1/APC Scrubber (Permit No. 21356)
 - b. Scrubber 2/APC Counterflow Tower Scrubber (Permit No. 21357)
 - c. Cross-flow Scrubber (Permit No. 17221)
- A minimum of three effluent exhaust samples should be obtained from the Spray Tower Scrubber (Permit No. 18423).
- 3. For each effluent exhaust sample, a summa canister used in conjunction with a thirty-minute regulator is recommended.
- 4. The sample port locations, velocity traverses, and exhaust gas characteristics (velocity, flow rate, temperature, etc.) for each of the sampling points identified above should be determined in accordance with CARB test methods 1-4.
- 5. Analysis of all samples should occur at an NELAP or ELAP certified laboratory. All samples should be analyzed following EPA method Toxic Organics 15 (TO-15).
- 6. During the course of emission testing, the rendering process should be operated at the highest throughput possible. It is highly recommended that both lines be in operation at the time of the testing. While the samples are being drawn, process indicators such as flow, temperature and production rate should be measured every 15 minutes.
- 7. When a source testing company is identified and selected, please submit a protocol to SMAQMD 30 days prior to commencing testing. SMAQMD staff will be present during testing.

If you have any questions concerning this matter, please contact Brian Krebs of my staff at (916) 874-4856.

Sincerely

David R. Grose Manager, Stationary Source Division

> 777 12th Street, 3rd Floor Sacramento, CA 95814-1908 916/874-4800 916/874-4899 fax www.airquality.org

H-4

eiplicate Flow.

AIR POLLUTION CONTROL OFFICER

Larry Greene